B. Remainders Game
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Today Pari and Arya are playing a game called Remainders.

Pari chooses two positive integer x and k, and tells Arya k but not x. Arya have to find the value . There are n ancient numbers c1, c2, ..., cn and Pari has to tell Arya  if Arya wants. Given k and the ancient values, tell us if Arya has a winning strategy independent of value of x or not. Formally, is it true that Arya can understand the value  for any positive integer x?

Note, that  means the remainder of x after dividing it by y.

Input

The first line of the input contains two integers n and k (1 ≤ n,  k ≤ 1 000 000) — the number of ancient integers and value k that is chosen by Pari.

The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 1 000 000).

Output

Print "Yes" (without quotes) if Arya has a winning strategy independent of value of x, or "No" (without quotes) otherwise.

Examples
input
4 52 3 5 12
output
Yes
input
2 72 3
output
No
Note

In the first sample, Arya can understand  because 5 is one of the ancient numbers.

In the second sample, Arya can't be sure what  is. For example 1 and 7 have the same remainders after dividing by 2 and 3, but they differ in remainders after dividing by 7.


题意:有数字x和k,x未知;知道x mod ci的结果,问x mod k是否唯一


官方题解:

Hint

Assume the answer of a test is No. There must exist a pair of integers x1 and x2 such that both of them have the same remainders after dividing by any ci, but they differ in remainders after dividing by k. Find more facts about x1 and x2!

Solution

Consider the x1 and x2 from the hint part. We have x1 - x2 ≡ 0 () for each 1 ≤ i ≤ n.

So:

We also have  (). As a result:

We've found a necessary condition. And I have to tell you it's also sufficient!

Assume , we are going to prove there exists x1, x2 such that x1 - x2 ≡ 0 () (for each 1 ≤ i ≤ n), and  ().

A possible solution is x1 = lcm(c1, c2, ..., cn) and x2 = 2 × lcm(c1, c2, ..., cn), so the sufficiency is also proved.

So you have to check if lcm(c1, c2, ..., cn) is divisible by k, which could be done using prime factorization of k and ci values.

For each integer x smaller than MAXC, find it's greatest prime divisor gpdx using sieve of Eratosthenes in .

Then using gpd array, you can write the value of each coin as p1q1p2q2...pmqm where pi is a prime integer and 1 ≤ qi holds. This could be done in  by moving from ci to  and adding gpdci to the answer. And you can factorize k by the same way. Now for every prime p that , see if there exists any coin i that the power of p in the factorization of ci is not smaller than the power of p in the factorization of k.

Complexity is .


题解前一部分比较好,后面还用筛法太扯了,质因数分解不用判质数

假设有两个x1和x2,如果x mod k不唯一的话则x1和x2满足:

x1-x2≡0(mod ci)----->lcm(c1,c2,..,cn)|x1-x2

x1-x2!≡0(mod k)

那么:

最小的x1-x2就是lcm

代入得lcm!≡0(mod k) 也就是k!|lcm

质因数分解k判断每个质因子是否是某个ci 的约数,如果全是则可以整除,解唯一,一定可以猜出

//
//  main.cpp
//  cf687b
//
//  Created by Candy on 9/20/16.
//  Copyright © 2016 Candy. All rights reserved.
//

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
;
int read(){
    ,f=;
    ; c=getchar();}
    +c-'; c=getchar();}
    return x*f;
}
int n,k,c[N];
bool check(int a){
    ;i<=n;i++) ) ;
    ;
}
int main(int argc, const char * argv[]) {
    n=read();k=read();
    ;i<=n;i++) c[i]=read();
    ;i<=k;i++){
        ;
        ) a*=i,k/=i;
        &&!check(a)){printf(;}
    }
    printf("Yes");
    ;
}

Codeforces 687B. Remainders Game[剩余]的更多相关文章

  1. codeforces 687B - Remainders Game 数学相关(互质中国剩余定理)

    题意:给你x%ci=bi(x未知),是否能确定x%k的值(k已知) ——数学相关知识: 首先:我们知道一些事情,对于k,假设有ci%k==0,那么一定能确定x%k的值,比如k=5和ci=20,知道x% ...

  2. CodeForces 687B Remainders Game

    数论. 如果$x$不唯一,假设存在两个解,较大的为${x_1}$,较小的为${x_2}$. 那么, $\left\{ {\begin{array}{*{20}{c}}{{x_1}\% {c_i} = ...

  3. Codeforces Round #360 (Div. 2) D. Remainders Game 中国剩余定理

    题目链接: 题目 D. Remainders Game time limit per test 1 second memory limit per test 256 megabytes 问题描述 To ...

  4. Codeforces Educational Codeforces Round 5 E. Sum of Remainders 数学

    E. Sum of Remainders 题目连接: http://www.codeforces.com/contest/616/problem/E Description The only line ...

  5. codeforces 360 D - Remainders Game

    D - Remainders Game Description Today Pari and Arya are playing a game called Remainders. Pari choos ...

  6. codeforces 616E Sum of Remainders (数论,找规律)

    E. Sum of Remainders time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  7. Educational Codeforces Round 5 E. Sum of Remainders (思维题)

    题目链接:http://codeforces.com/problemset/problem/616/E 题意很简单就不说了. 因为n % x = n - n / x * x 所以答案就等于 n * m ...

  8. Codeforces 616E - Sum of Remainders

    616E Sum of Remainders Calculate the value of the sum: n mod 1 + n mod 2 + n mod 3 + - + n mod m. As ...

  9. codeforces 616E. Sum of Remainders 数学

    题目链接 给两个数n, m. 求n%1+n%2+.......+n%m的值. 首先, n%i = n-n/i*i, 那么原式转化为n*m-sigma(i:1 to m)(n/i*i). 然后我们可以发 ...

随机推荐

  1. MySQL PXC构建一个新节点只需IST传输的方法

    需求场景:原有的pxc环境数据量已经比较大,新买的服务器要加入此集群中,如何让其用IST的方式传输,而不是SST. PXC传输数据有两种方式: IST: Incremental State Trans ...

  2. 使用PhoneGap搭建一个山寨京东APP

    为什么要写一个App 首先解释下写出来的这个App,其实无任何功能,只是用HTML和CSS模仿JD移动端界面写的一个适配移动端的Web界面.本篇主要内容是介绍如何使用PhoneGap把开发出来的mob ...

  3. Aspect Oriented Programming using Interceptors within Castle Windsor and ABP Framework AOP

    http://www.codeproject.com/Articles/1080517/Aspect-Oriented-Programming-using-Interceptors-wit Downl ...

  4. ubuntu-15.04-server-i386.iso 安装 Oracle 11gR2 数据库

    特点: 需要重新安装老版本的 libaio1_0.3.109-2ubuntu?_i386.deb.默认的libaio库有问题,和其默认libaio的编译方式有关! 默认的gcc 4.9 需要使用 -W ...

  5. Hive UDF’S addMonths

    our project use hive 0.10 , and in the hiveql , we need use addMonths function builtin in hive-0.11. ...

  6. 通过Profiles查看create语句的执行时间消耗 (转)

    一,查看profiles的状态值   1,查看profiles是否已经打开了,默认是不打开的.   mysql> show profiles;   Empty set (0.02 sec) my ...

  7. 用c#读取文件内容中文是乱码的解决方法:

    用c#读取文件内容中文是乱码的解决方法: //方法1: StreamReader din = new StreamReader(@"C:\1.txt", System.Text.E ...

  8. wire与reg的区别?转载大神!

    本文转自:http://www.cnblogs.com/thymon/archive/2010/06/09/1754541.html //------------------------------- ...

  9. struct 理解 (需要经常理解)

    2014.3.11 分析offviewer时,有一些问题,很基础的,但是忘记了,发现问题那就快点搞定它 以下内容参考自百度百科: (2)struct 结构体有点忘记了,要复习一下  定义一个结构的一般 ...

  10. 调bug的一点感悟

    出错时一定要先看错误日志,要知道出什么错了,所以平常在可能出错的地方都要输出错误日志. 不要根据脑中的设想去调bug,时间久了就没有耐心,一烦躁起来,思维定势了,就越调不出来了. 所以一般半小时还找不 ...