考试的时候打了个树链剖分,而且还审错题了,以为是每天找所有点的最长路,原来是每天起点的树上最长路径再搞事情。。

先用dfs处理出来每个节点以他为根的子树的最长链和次长链。(后面会用到)

然后用类似dp的方法把每个节点的最长路径求出来。

下面是具体解释,请思考

以一个节点为例(w为它与父亲节点道路的权值)

一、如果它父亲节点的最长路径不过它

那么它最长路径等于它父亲最长路径+w(自己画图即可理解,往上走的)

它的次长路径等于它的最长链(只能往下走)

二、如果过它

那么它的最长路径有两种可能

①它的最长链

②它父亲的次长路径+w

如果①优,那么它最长路径为①,次长路径为max(它的次长链,②)

如果②优,那么它最长路径为②,次长路径为①

很好理解吧。。。

然后让求最大值与最小值差在m之内的最长子串。

据他们说有O(n)的做法,不过我打了O(nlogn)的打法,跑进了1s,反正O(能过)就行。

我的nlogn是二分答案+单调队列。二分答案去验证,挨个移动,看是否满足条件。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define pos(i,a,b) for(int i=(a);i<=(b);i++)
#define pos2(i,a,b) for(int i=(a);i>=(b);i--)
int n,m;
#define N 1001000
struct haha
{
	int to,next,w;
};
int read()
{
    int x=0;
    char ch=getchar();
    while(ch<'0'||ch>'9')
        ch=getchar();
    while(ch>='0'&&ch<='9')
        x=x*10+ch-'0',ch=getchar();
    return x;
}
haha edge[N*4];
int head[N],cnt=1;
void add(int u,int v,int w)
{
	edge[cnt].w=w;
	edge[cnt].to=v;
	edge[cnt].next=head[u];
	head[u]=cnt++;
}
struct qian
{
	int fir,firch;      int sec,secch;
	int roadfir,roadsec;int roadfirch,roadsecch;
}cun[N];
int fa[N];
void dfs(int now)
{
	for(int i=head[now];i;i=edge[i].next)
	{
		int to=edge[i].to;
		int w=edge[i].w;
		dfs(to);
		if(cun[now].sec<cun[to].fir+w)
		{
			cun[now].sec=cun[to].fir+w;
			cun[now].secch=to;
			if(cun[now].sec>cun[now].fir)
			{
				swap(cun[now].sec,cun[now].fir);
				swap(cun[now].secch,cun[now].firch);
			}
		}
	}
}
void dp(int now,int w)
{
	if(now==1)
	{
		cun[now].roadfir=cun[now].fir;
		cun[now].roadsec=cun[now].sec;
		cun[now].roadfirch=cun[now].firch;
		cun[now].roadsecch=cun[now].secch;
	}
	else
	{
		if(cun[fa[now]].roadfirch!=now)
		{
			cun[now].roadfir=cun[fa[now]].roadfir+w;
			cun[now].roadfirch=fa[now];
			cun[now].roadsec=cun[now].fir;
		}
		else
		{
			if(cun[now].fir>cun[fa[now]].roadsec+w)
			{
				cun[now].roadfir=cun[now].fir;
				cun[now].roadfirch=cun[now].firch;
				cun[now].roadsec=max(cun[now].sec,cun[fa[now]].roadsec+w);
			}
			else
			{
				cun[now].roadfir=cun[fa[now]].roadsec+w;
				cun[now].roadfirch=fa[now];
				cun[now].roadsec=cun[now].fir;
			}
		}
	}
	for(int i=head[now];i;i=edge[i].next)
	{
		int to=edge[i].to;
		int ww=edge[i].w;
		dp(to,ww);
	}
}
int f[N];
int qmax[N],hed,tail;
int qmin[N],beg,ed;
bool find(int val){
    hed=tail=0;
    beg=ed=0;
    for(int i=1;i<=n;i++){
        while(hed<tail&&i-qmax[hed]>=val) hed++;
        while(beg<ed&&i-qmin[beg]>=val) beg++;
        while(hed<tail&&f[qmax[tail-1]]<f[i])   tail--;qmax[tail++]=i;
        while(beg<ed&&f[qmin[ed-1]]>f[i]) ed--;qmin[ed++]=i;
        if(i>=val&&f[qmax[hed]]-f[qmin[beg]]<=m) return true;
    }
    return false;
}
int main()
{
    //freopen("race.in","r",stdin);
    //freopen("race.out","w",stdout);
	n=read();m=read();
	pos(i,2,n)
	{
		int x,y;
		x=read();y=read();
		add(x,i,y);
		fa[i]=x;
	}
	dfs(1);
	dp(1,0);

    for(int i=1;i<=n;i++)
        cout<<cun[i].roadfir<<" "<<cun[i].roadsec<<endl;
	while(1);
    for(int i=1;i<=n;i++)
	   f[i]=cun[i].roadfir;
	int l=1,r=n+1;
	while(l<r-1){
        int mid=l+r>>1;
        if(find(mid))l=mid;
        else r=mid;
    }
    int l=1,r=n+1;
    while(l<r-1)
    {
        int mid=(l+r)>>1;
        if(find(mid))
          l=mid;
        else
          r=mid;
    }   

	cout<<l;
	//while(1);
	return 0;
}

  

[BZOJ 2500]幸福的道路 树形dp+单调队列+二分答案的更多相关文章

  1. bzoj2500幸福的道路 树形dp+单调队列

    2500: 幸福的道路 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 434  Solved: 170[Submit][Status][Discuss ...

  2. [BZOJ 2500] 幸福的道路

    照例先贴题面(汪汪汪) 2500: 幸福的道路 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 368  Solved: 145[Submit][Sta ...

  3. bzoj2500: 幸福的道路(树形dp+单调队列)

    好题.. 先找出每个节点的树上最长路 由树形DP完成 节点x,设其最长路的子节点为y 对于y的最长路,有向上和向下两种情况: down:y向子节点的最长路g[y][0] up:x的次长路的g[x][1 ...

  4. ●BZOJ 2500 幸福的道路

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2500 题解: DFS,单调队列 首先有一个结论,距离树上某一个点最远的点一定是树的直径的一个 ...

  5. bzoj 2500 幸福的道路 树上直径+set

    首先明确:树上任意一点的最长路径一定是直径的某一端点. 所以先找出直径,求出最长路径,然后再求波动值<=m的最长区间 #include<cstdio> #include<cst ...

  6. [BZOJ 4033] [HAOI2015] T1 【树形DP】

    题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...

  7. [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)

    DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...

  8. DP+单调队列 codevs 1748 瑰丽华尔兹(还不是很懂具体的代码实现)

    codevs 1748 瑰丽华尔兹 2005年NOI全国竞赛  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 大师 Master 题解       题目描述 Descripti ...

  9. BZOJ 1926: [Sdoi2010]粟粟的书架(主席树,二分答案)

    BZOJ 1926: [Sdoi2010]粟粟的书架(主席树,二分答案) 题意 : 给你一个长为\(R\)宽为\(C\)的矩阵,第\(i\)行\(j\)列的数为\(P_{i,j}\). 有\(m\)次 ...

随机推荐

  1. xamarin(3.9.236)里DATETIMENOW的错误。

    [ERROR] FATAL UNHANDLED EXCEPTION: System.EntryPointNotFoundException: monodroid_get_system_property ...

  2. Excel导入导出的业务进化场景及组件化的设计方案(上)

    1:前言 看过我文章的网友们都知道,通常前言都是我用来打酱油扯点闲情的. 自从写了上面一篇文章之后,领导就找我谈话了,怕我有什么想不开. 所以上一篇的(下)篇,目前先不出来了,哪天我异地二次回忆的时候 ...

  3. [NHibernate]集合类(Collections)映射

    系列文章 [Nhibernate]体系结构 [NHibernate]ISessionFactory配置 [NHibernate]持久化类(Persistent Classes) [NHibernate ...

  4. nginx安装ssl

    http://wiki.nginx.org/Modules#Standard_HTTP_modules 这里面带有所有基本的模块,及需要额外增加的模块 1.安装带有ssl模块的 nginx wget  ...

  5. openldap主机访问控制(基于用户组)

    建立组织单元 cat << _EOF_ | ldapadd -x -W -H ldaps://master.local -D cn=manager,dc=suntv,dc=tv dn: o ...

  6. COM编程之五 动静态链接

    [1]静态链接 静态链接是指由链接器在链接时将库的内容加入到可执行程序中的做法. 链接器是一个独立程序,将一个或多个库或目标文件(先前由编译器或汇编器生成)链接到一块生成可执行程序. 函数和数据被编译 ...

  7. C# LINQ详解(一)

    原文标题:How does it work in C#?-Part 3 (C# LINQ in detail),作者:Mohammand A Rahman. 目录 LINQ 基础 扩展方法-幕后的工作 ...

  8. Excel文件数据保存到SQL中

    1.获取DataTable /// <summary> /// 查询Excel文件中的数据 /// </summary> /// <param name="st ...

  9. Json部分知识(前台显示格式、Json-lib日期处理)

    1,Json格式用于datagrid数据显示 easyui前台显示数据可以使用JSONObject,也可以使用JSONArray.但是如果需要在datagrid表格中进行数据显示,只能使用JSONOb ...

  10. 让 SpringMVC 接收多个对象的4种方法

    问题背景: 我要在一个表单里同时一次性提交多名乘客的个人信息到SpringMVC,前端HTML和SpringMVC Controller里该如何处理? 第1种方法:表单提交,以字段数组接收: 第2种方 ...