Python matplotlib模块,是扩展的MATLAB的一个绘图工具库,它可以绘制各种图形

建议安装 Anaconda后使用 ,集成了很多第三库,基本满足大家的需求,下载地址,对应选择python 2.7 或是 3.5 的就可以了:
https://www.continuum.io/downloads#windows

脚本默认执行方式:
             1.获取当前文件夹下的1.log文件
             2.将数据格式化为矩阵
             3.以矩阵的列索引为x坐标,行索引为y坐标,值为z坐标
             4.绘制曲面图
测试数据
测试所用数据:
 
r_gain=
79.000000f,  89.000000f, 104.000000f, 120.000000f, 135.000000f,
149.000000f, 160.000000f, 172.000000f, 176.000000f, 172.000000f,
164.000000f, 159.000000f, 143.000000f, 128.000000f, 113.000000f, 
97.000000f,  81.000000f,
r_gain=
84.000000f, 100.000000f, 120.000000f, 136.000000f, 156.000000f,
176.000000f, 192.000000f, 204.000000f, 208.000000f, 204.000000f,
196.000000f, 180.000000f, 164.000000f, 144.000000f, 124.000000f,
108.000000f,  92.000000f,
r_gain=
91.000000f, 112.000000f, 132.000000f, 156.000000f, 176.000000f,
200.000000f, 224.000000f, 240.000000f, 248.000000f, 244.000000f,
228.000000f, 208.000000f, 188.000000f, 164.000000f, 140.000000f,
120.000000f,  99.000000f,
r_gain=
99.000000f, 120.000000f, 144.000000f, 172.000000f, 200.000000f,
228.000000f, 256.000000f, 276.000000f, 284.000000f, 280.000000f,
264.000000f, 240.000000f, 208.000000f, 180.000000f, 156.000000f,
132.000000f, 105.000000f,
r_gain=107.000000f,
128.000000f, 156.000000f, 184.000000f, 216.000000f, 256.000000f,
288.000000f, 308.000000f, 320.000000f, 316.000000f, 296.000000f,
264.000000f, 228.000000f, 196.000000f, 164.000000f, 140.000000f,
113.000000f,
r_gain=111.000000f,
132.000000f, 160.000000f, 192.000000f, 232.000000f, 272.000000f,
304.000000f, 332.000000f, 340.000000f, 336.000000f, 316.000000f,
284.000000f, 244.000000f, 204.000000f, 172.000000f, 144.000000f,
117.000000f,
r_gain=109.000000f,
136.000000f, 164.000000f, 196.000000f, 232.000000f, 276.000000f,
312.000000f, 336.000000f, 348.000000f, 344.000000f, 320.000000f,
288.000000f, 248.000000f, 208.000000f, 172.000000f, 144.000000f,
117.000000f,
r_gain=111.000000f,
132.000000f, 160.000000f, 192.000000f, 228.000000f, 268.000000f,
304.000000f, 328.000000f, 340.000000f, 332.000000f, 312.000000f,
280.000000f, 240.000000f, 200.000000f, 168.000000f, 140.000000f,
119.000000f,
r_gain=101.000000f,
128.000000f, 152.000000f, 180.000000f, 212.000000f, 248.000000f,
280.000000f, 304.000000f, 312.000000f, 308.000000f, 288.000000f,
260.000000f, 224.000000f, 192.000000f, 160.000000f, 136.000000f,
109.000000f,
r_gain=
95.000000f, 116.000000f, 140.000000f, 164.000000f, 192.000000f,
224.000000f, 248.000000f, 272.000000f, 280.000000f, 272.000000f,
256.000000f, 232.000000f, 200.000000f, 176.000000f, 152.000000f,
128.000000f, 101.000000f,
r_gain=
87.000000f, 108.000000f, 128.000000f, 148.000000f, 172.000000f,
192.000000f, 216.000000f, 232.000000f, 236.000000f, 232.000000f,
220.000000f, 200.000000f, 180.000000f, 156.000000f, 136.000000f,
116.000000f,  95.000000f,
r_gain=
80.000000f,  96.000000f, 112.000000f, 132.000000f, 148.000000f,
168.000000f, 180.000000f, 192.000000f, 196.000000f, 196.000000f,
184.000000f, 172.000000f, 156.000000f, 136.000000f, 120.000000f,
104.000000f,  88.000000f,
r_gain=
69.000000f,  85.000000f,  96.000000f, 111.000000f, 127.000000f,
141.000000f, 153.000000f, 160.000000f, 164.000000f, 159.000000f,
157.000000f, 145.000000f, 135.000000f, 120.000000f, 104.000000f, 
88.000000f,  77.000000f,

曲面图脚本
# -*- coding: utf-8 -*-
 
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from pandas import DataFrame
 
 
def draw(x, y, z):
    '''
    采用matplolib绘制曲面图
    :param x: x轴坐标数组
    :param y: y轴坐标数组
    :param z: z轴坐标数组
    :return:
    '''
    X = x
    Y = y
    Z = z
 
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.plot_trisurf(X, Y, Z)
    plt.show()
 
if __name__ == '__main__':
    '''
       默认执行方式:
             1.获取当前文件夹下的1.log文件
             2.将数据格式化为矩阵
             3.以矩阵的列索引为x坐标,行索引为y坐标,值为z坐标
             4.绘制曲面图
    '''
    data = {}
    index_origin = 0
    f = open("1.log")
    line = f.readline()
    while line:
        data[index_origin] = line.split('=')[-1].replace(' ', '').split('f,')[0:-1]
        index_origin = index_origin + 1
        line = f.readline()
    f.close()
    df = DataFrame(data)
    df = df.T
 
    x = []
    for i in range(len(df.index)):
        x = x + list(df.columns)
    print(x)
 
    y = []
    for i in range(len(df.index)):
        for m in range(17):
            y.append(i)
    print(y)
 
    z = []
    for i in range(len(df.index)):
        z = z + df[i:i + 1].values.tolist()[0]
    z = map(float, z)
    print (z)
    draw(x, y, z)

【python】pandas & matplotlib 数据处理 绘制曲面图的更多相关文章

  1. python中matplotlib所绘制的图包含了很多的对象

    上图中的top=‘off’意思是说顶部的grid lines 看不见. 去除frame,意思就是将这个矩形给去除掉,spine意思是脊柱 bars = plt.bar(pos, popularity, ...

  2. Python使用matplotlib模块绘制多条折线图、散点图

    用matplotlib模块 #!usr/bin/env python #encoding:utf-8 ''' __Author__:沂水寒城 功能:折线图.散点图测试 ''' import rando ...

  3. python 运用numpy库与matplotlib库绘制数据图

    代码一 import numpy as np import matplotlib.pyplot as plt x=np.linspace(0,6,100) y=np.cos(2*np.pi*x)*np ...

  4. Python数据分析-Matplotlib图标绘制

    Matplotlib介绍 Matplotlib是一个强大的Python绘图和数据可视化的工具包. Matplotlib的主要功能 Matplotlib是python中的一个包,主要用于绘制2D图形(当 ...

  5. python使用matplotlib:subplot绘制多个子图

    1 问题描述 matploglib 能够绘制出精美的图表, 有些时候, 我们希望把一组图放在一起进行比较, 有没有什么好的方法呢? matplotlib 中提供的 subplot 可以很好的解决这个问 ...

  6. Python Pandas 时间序列双轴折线图

    时间序列pv-gmv双轴折线图 import numpy as np import pandas as pd import matplotlib.pyplot as plt n = 12 date_s ...

  7. 使用matplotlib库绘制函数图

    函数如下: z = x^2 * y / (x^4 +y^2) 代码如下: import numpy as np import matplotlib.pyplot as plt import mpl_t ...

  8. python使用matplotlib绘制折线图教程

    Matplotlib是一个Python工具箱,用于科学计算的数据可视化.借助它,Python可以绘制如Matlab和Octave多种多样的数据图形.下面这篇文章主要介绍了python使用matplot ...

  9. Python调用matplotlib实现交互式数据可视化图表案例

    交互式的数据可视化图表是 New IT 新技术的一个应用方向,在过去,用户要在网页上查看数据,基本的实现方式就是在页面上显示一个表格出来,的而且确,用表格的方式来展示数据,显示的数据量会比较大,但是, ...

随机推荐

  1. 一段神奇的代码(python 2.7)网上抓图小Demo

    二话不说 先上代码: #coding=utf-8 import urllib import re import time global x x = 1 def getHtml(url): page = ...

  2. JSON与js对象序列化

    JavaScript对象表示法(JavaScript Object Notation,简称JSON)是一种轻量级的数据交换格式,它基于js字面量表示法,是js的一个子集.虽然是一个js的子集但是他与语 ...

  3. MVC和WebApi 使用get和post 传递参数。

    我们总结一下用js请求服务器的传参方法. Get方式 Get主要是用来查询,一般分为无参,一个参数,多个参数,实体对象参数. 1.无参 //Get没有参数 var get_f1 = function( ...

  4. 在objc项目中使用常量的最佳实践

    在objc项目中使用常量的最佳实践   之前,在在objc项目中使用常量中,使用c的预处理#define来设置常量.比如,可以做个头文件,然后在需要的类文件中import,使用常量. 但这不是最佳实践 ...

  5. Android他们控制的定义(一)

    培养自己的控制步骤定义: 1.要理解View作品  2. 分享到继承View子类 3. 要定义自己的View类添加属性  4. 绘制控件  5. 响应用户消息  6 .自己定义回调函数  一.View ...

  6. php 生成 验证码的例子

    /** +---------------------------------------------------------- * 生成随机字符串  CuPlayer.com 酷播 +-------- ...

  7. 【学习笔记】Struts2 类型转换

    为什么需要类型转换 在基于HTTP协议的Web应用中 客户端请求的所有内容(表单中提交的内容等)都以文本编码的方式传输到服务器端但服务器端的编程语言(如Java)有着丰富的数据类型 如 int boo ...

  8. (转)Spring Boot 2 (八):Spring Boot 集成 Memcached

    http://www.ityouknow.com/springboot/2018/09/01/spring-boot-memcached.html Memcached 介绍 Memcached 是一个 ...

  9. background url base64

    各自含义:data: ----获取数据类型名称image/gif; -----指数据类型名称base64 -----指编码模式AAAAA ------指编码以后的结果. background-imag ...

  10. Web Service(一):初识

    1. 前言 cxf 在项目中应用好久了,一直没有写总结,现在补上. 由于cxf 属于Web Service的一个实现,所以先学习和总结一下Web Service,作为学习cxf的基础. 2. WebS ...