1、MapReduce代码入口

FileInputFormat.setInputPaths(job, new Path(input)); //设置MapReduce输入格式
job.waitForCompletion(true);

2、InputFormat分析

public abstract class InputFormat<K, V> {
    //获取输入文件的分片,仅是逻辑分片,并没有物理分片
    public abstract  List<InputSplit> getSplits(JobContext context);

    //创建RecordReader,从InputSplit中读取数据
    public abstract  RecordReader<K,V> createRecordReader(InputSplit split,TaskAttemptContext context) ;
}

不同的InputFormat会各自实现不同的文件读取方式以及分片方式,每个输入分片(InputSplit)会被单独的map task作为数据源

3、InputSplit

Mapper的输入是一个一个的输入分片(InputSplit)

public abstract class InputSplit {
  public abstract long getLength();
  public abstract String[] getLocations();
}

public class FileSplit extends InputSplit implements Writable{
    private Path file; //文件路径
    private long start; //分片起始位置
    private long length;  //分片长度
    private String[] hosts; //存储分片的hosts

    public FileSplit(Path file, long start, long length, String[] hosts) {
        this.file = file;
        this.start = start;
        this.length = length;
        this.hosts = hosts;
    }
}

一个FileSplit对应Mapper的一个输入文件,不管这个文件有多么的小,也是作为一个单独的InputSplit来处理;
在输入文件是由大量小文件组成的场景下,就会有大量的InputSplit,从而需要大量的Mapper的处理;
大量的Mapper Task创建和销毁开销将是巨大的;可以采用CombineFileSplit将多个小文件进行合并再交由Mapper Task处理;

4、FileInputFormat

public List<InputSplit> getSplits(JobContext job) throws IOException {
    /**
     * getFormatMinSplitSize() = 1
     * job.getConfiguration().getLong(SPLIT_MINSIZE, 1L)
     * SPLIT_MINSIZE = "mapreduce.input.fileinputformat.split.minsize"
     * mapred-default.xml中参数为0
     */
    long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job)); //计算分片的最小值: max(1,0) = 1

    /**
     * SPLIT_MAXSIZE = "mapreduce.input.fileinputformat.split.maxsize"
     * mapred-default.xml中参数为空
     */
    long maxSize = getMaxSplitSize(job); //计算分片的最大值:Long.MAX_VALUE

    //存储输入文件的分片结果
    List<InputSplit> splits = new ArrayList<InputSplit>();
    List<FileStatus> files = listStatus(job);
    for (FileStatus file: files) {
        Path path = file.getPath();
        long length = file.getLen();
        if (length != 0) {
            ...
            if (isSplitable(job, path)) { //能分片
                long blockSize = file.getBlockSize();
                long splitSize = computeSplitSize(blockSize, minSize, maxSize);{
                    //max(1, min(Long.MAX_VALUE, 64M)) = 64M 默认情况下splitSize=blockSize
                    return Math.max(minSize, Math.min(maxSize, blockSize));
                }

                //循环分片,当剩余数据与分片大小比值大于Split_Slop时,继续分片,小于等于时,停止分片
                long bytesRemaining = length;
                while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) { //SPLIT_SLOP = 1.1
                    int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
                    splits.add(makeSplit(path, length-bytesRemaining, splitSize, blkLocations[blkIndex].getHosts()));
                    bytesRemaining -= splitSize;
                }

                //处理余下的数据
                if (bytesRemaining != 0) {
                    int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
                    splits.add(makeSplit(path, length-bytesRemaining, bytesRemaining, blkLocations[blkIndex].getHosts()));
                }
            } else { // 不可分片,整块返回(有些压缩后是不能分片处理的)
                splits.add(makeSplit(path, 0, length, blkLocations[0].getHosts()));
            }
        } else {
            splits.add(makeSplit(path, 0, length, new String[0]));
        }
    }
    job.getConfiguration().setLong(NUM_INPUT_FILES, files.size()); // 设置输入文件数量
    LOG.debug("Total # of splits: " + splits.size());
    return splits;
}

5、PathFilter

protected List<FileStatus> listStatus(JobContext job) throws IOException {
    ......
    List<PathFilter> filters = new ArrayList<PathFilter>();
    filters.add(hiddenFileFilter);
    PathFilter jobFilter = getInputPathFilter(job);
    if (jobFilter != null) {
      filters.add(jobFilter);
    }
    PathFilter inputFilter = new MultiPathFilter(filters);
    ......
}

PathFilter文件筛选器接口,使用它我们可以控制哪些文件要作为输入,哪些不作为输入;
PathFilter有一个accept(Path)方法,当接收的Path要被包含进来,就返回true,否则返回false;

public interface PathFilter {
    boolean accept(Path path);
}

//过滤掉文件名以_或者.开头的文件
private static final PathFilter hiddenFileFilter = new PathFilter(){
    public boolean accept(Path p){
        String name = p.getName();
        return !name.startsWith("_") && !name.startsWith(".");
    }
}; 

6、RecordReader

RecordReader将InputSplit拆分成KEY-VALUE对

public abstract class RecordReader<KEYIN, VALUEIN> implements Closeable {
    //InputSplit初始化
    public abstract void initialize(InputSplit split,TaskAttemptContext context) ;

    //读取分片下一个<key, value>对
    public abstract boolean nextKeyValue() throws IOException, InterruptedException;

    //获得当前读取到的KEY
    public abstract KEYIN getCurrentKey() throws IOException, InterruptedException;

    //获得当前读取到的VALUE
     public abstract  VALUEIN getCurrentValue() throws IOException, InterruptedException;

    //跟踪读取分片的进度
    public abstract float getProgress() throws IOException, InterruptedException;

    //关闭RecordReader
    public abstract void close() throws IOException;
}

7、Mapper

public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
    public abstract class Context implements MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
    }

    //预处理,仅在map task启动时运行一次
    protected void setup(Context context) throws IOException, InterruptedException {
    }

    //对于InputSplit中的每一对<key, value>都会运行一次
    protected void map(KEYIN key, VALUEIN value, Context context) throws IOException, InterruptedException {
        context.write((KEYOUT) key, (VALUEOUT) value);
    }

    //扫尾工作,比如关闭流等
    protected void cleanup(Context context) throws IOException, InterruptedException {
    }

    public void run(Context context) throws IOException, InterruptedException {
        setup(context);
        try {
            while (context.nextKeyValue()) {
                map(context.getCurrentKey(), context.getCurrentValue(), context);
            }
        } finally {
            cleanup(context);
        }
    }
}

模板模式的应用:run方法:
1)setup
2)循环从InputSplit中获得到的KV对调用map函数进行处理
3)cleanup

至此完成了MapReduce的输入文件是如何被过滤分片读取读出“K-V对”,然后交给Mapper类来处理

MapReduce从输入文件到Mapper处理之间的过程的更多相关文章

  1. Hadoop(十七)之MapReduce作业配置与Mapper和Reducer类

    前言 前面一篇博文写的是Combiner优化MapReduce执行,也就是使用Combiner在map端执行减少reduce端的计算量. 一.作业的默认配置 MapReduce程序的默认配置 1)概述 ...

  2. Hadoop Mapreduce分区、分组、二次排序过程详解[转]

    原文地址:Hadoop Mapreduce分区.分组.二次排序过程详解[转]作者: 徐海蛟 教学用途 1.MapReduce中数据流动   (1)最简单的过程:  map - reduce   (2) ...

  3. 【转】wpa_supplicant与wpa_cli之间通信过程

    [转]wpa_supplicant与wpa_cli之间通信过程 转自:http://blog.chinaunix.net/uid-26585427-id-4051479.html wpa_suppli ...

  4. Hadoop学习笔记(老版本,YARN之前),MapReduce任务Namenode DataNode Jobtracker Tasktracker之间的关系

    一.基本概念 在MapReduce中,一个准备提交执行的应用程序称为“作业(job)”,而从一个作业划分出的运行于各个计算节点的工作单元称为“任务(task)”.此外,Hadoop提供的分布式文件系统 ...

  5. 从零开始学习Hadoop--第2章 第一个MapReduce程序

    1.Hadoop从头说 1.1 Google是一家做搜索的公司 做搜索是技术难度很高的活.首先要存储很多的数据,要把全球的大部分网页都抓下来,可想而知存储量有多大.然后,要能快速检索网页,用户输入几个 ...

  6. Python实现Hadoop MapReduce程序

    1.概述 Hadoop Streaming提供了一个便于进行MapReduce编程的工具包,使用它可以基于一些可执行命令.脚本语言或其他编程语言来实现Mapper和 Reducer,从而充分利用Had ...

  7. Hadoop 2:Mapper和Reduce

    Hadoop 2:Mapper和Reduce Understanding and Practicing Hadoop Mapper and Reduce 1 Mapper过程 Hadoop将输入数据划 ...

  8. [Hadoop in Action] 第4章 编写MapReduce基础程序

    基于hadoop的专利数据处理示例 MapReduce程序框架 用于计数统计的MapReduce基础程序 支持用脚本语言编写MapReduce程序的hadoop流式API 用于提升性能的Combine ...

  9. Hadoop MapReduce执行过程详解(带hadoop例子)

    https://my.oschina.net/itblog/blog/275294 摘要: 本文通过一个例子,详细介绍Hadoop 的 MapReduce过程. 分析MapReduce执行过程 Map ...

随机推荐

  1. Openjudge 1.13-21:最大质因子序列(每日两水)

    总时间限制:  1000ms 内存限制:  65536kB 描述 任意输入两个正整数m, n (1 < m < n <= 5000),依次输出m到n之间每个数的最大质因子(包括m和n ...

  2. mysql快速导入大量数据问题

    今天需要把将近存有一千万条记录的*.sql导入到mysql中.使用navicate导入,在导入100万条之后速度就明显变慢了, 导入五百万条数据的时候用了14个小时,且后面的数据导入的越来越慢. 后来 ...

  3. python学习文章

    推荐大家看看,这几个涉及到解决问题了 用机器学习算法解决问题(图文+程序) http://www.bida.org.cn/index.php?qa=7 数据的价值是提升业务而不仅仅是用户画像 http ...

  4. Oracle 日常应用和操作笔记

    简单整理oracle日常应用笔记. 1.采用excel表格中的数据直接粘贴数据库记录中,默认会在后面加一个空格“”,操作完成后一定要记得对空格匹配然后修改一下. 2.查询数据库里的所有表结构, 采用s ...

  5. 重点关注之OData with List

    OData是什么 官方解释:The Open Data Protocol (OData) is a data access protocol for the web. OData provides a ...

  6. (5)Quartz学习

    原文:http://blog.csdn.net/zxl315/article/details/10879927 介绍Quartz Quartz是一个开源的任务调度系统,它能用来调度很多任务的执行. 运 ...

  7. sql查询统计,根据新闻类别ID统计,没有数据显示0

    有两张表,新闻信息表MessageInfo和新闻类别表MessageType.表结构如下: 然后需要实现下面这种查询结果: 这个是我面试时遇到的,上面的新闻类型是乱写的.当时没有做出来,然后回来又研究 ...

  8. Python设计模式——外观模式

    外观模式跟代理模式有点像,都是在client和目标的类之间建一个中间的类,client不直接调用目标的类,而是通过先调用中间类的方法,由中间类来实现怎么调用目标类. 代理模式用这种模式的目的是可以实现 ...

  9. JAVA三大框架的各自作用

    http://christhb.blog.163.com/blog/static/98982492011727114936239/ 一.Spring Spring是一个解决了许多在J2EE开发中常见的 ...

  10. 常用mysql命令(经常更新)

    insert into hr_t_clubschedule(clubid) select clubid from hr_t_clubschedule where id=45;//获取指定数据,并插入数 ...