本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,博主为石山园,博客地址为 http://www.cnblogs.com/shishanyuan  。该系列课程是应邀实验楼整理编写的,这里需要赞一下实验楼提供了学习的新方式,可以边看博客边上机实验,课程地址为 https://www.shiyanlou.com/courses/237

【注】该系列所使用到安装包、测试数据和代码均可在百度网盘下载,具体地址为 http://pan.baidu.com/s/10PnDs,下载该PDF文件

、搭建环境

部署节点操作系统为CentOS,防火墙和SElinux禁用,创建了一个shiyanlou用户并在系统根目录下创建/app目录,用于存放Hadoop等组件运行包。因为该目录用于安装hadoop等组件程序,用户对shiyanlou必须赋予rwx权限(一般做法是root用户在根目录下创建/app目录,并修改该目录拥有者为shiyanlou(chown –R shiyanlou:shiyanlou /app)。

Hadoop搭建环境:

l  虚拟机操作系统: CentOS6.6  64位,单核,1G内存

l  JDK:1.7.0_55 64位

l  Hadoop:1.1.2

、HBase介绍

HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。

HBase是Google Bigtable的开源实现,类似Google Bigtable利用GFS作为其文件存储系统,HBase利用Hadoop HDFS作为其文件存储系统;Google运行MapReduce来处理Bigtable中的海量数据,HBase同样利用Hadoop MapReduce来处理HBase中的海量数据;Google Bigtable利用 Chubby作为协同服务,HBase利用Zookeeper作为对应。

上图描述了Hadoop EcoSystem中的各层系统,其中HBase位于结构化存储层,Hadoop HDFS为HBase提供了高可靠性的底层存储支持,Hadoop MapReduce为HBase提供了高性能的计算能力,Zookeeper为HBase提供了稳定服务和failover机制。

此外,Pig和Hive还为HBase提供了高层语言支持,使得在HBase上进行数据统计处理变的非常简单。 Sqoop则为HBase提供了方便的RDBMS数据导入功能,使得传统数据库数据向HBase中迁移变的非常方便。

2.1 HBase访问接口

1. Native Java API,最常规和高效的访问方式,适合Hadoop MapReduce Job并行批处理HBase表数据

2. HBase Shell,HBase的命令行工具,最简单的接口,适合HBase管理使用

3. Thrift Gateway,利用Thrift序列化技术,支持C++,PHP,Python等多种语言,适合其他异构系统在线访问HBase表数据

4. REST Gateway,支持REST 风格的Http API访问HBase, 解除了语言限制

5. Pig,可以使用Pig Latin流式编程语言来操作HBase中的数据,和Hive类似,本质最终也是编译成MapReduce Job来处理HBase表数据,适合做数据统计

6. Hive,当前Hive的Release版本尚没有加入对HBase的支持,但在下一个版本Hive 0.7.0中将会支持HBase,可以使用类似SQL语言来访问HBase

2.2 HBase数据模型

2.2.1 Table & Column Family

l  Row Key: 行键,Table的主键,Table中的记录按照Row Key排序

l  Timestamp: 时间戳,每次数据操作对应的时间戳,可以看作是数据的version number

l  Column Family:列簇,Table在水平方向有一个或者多个Column Family组成,一个Column Family中可以由任意多个Column组成,即Column Family支持动态扩展,无需预先定义Column的数量以及类型,所有Column均以二进制格式存储,用户需要自行进行类型转换。

2.2.2 Table & Region

当Table随着记录数不断增加而变大后,会逐渐分裂成多份splits,成为regions,一个region由[startkey,endkey)表示,不同的region会被Master分配给相应的RegionServer进行管理:

-ROOT- && .META. Table

HBase中有两张特殊的Table,-ROOT-和.META.

l  .META.:记录了用户表的Region信息,.META.可以有多个regoin

l  -ROOT-:记录了.META.表的Region信息,-ROOT-只有一个region

l  Zookeeper中记录了-ROOT-表的location

Client访问用户数据之前需要首先访问zookeeper,然后访问-ROOT-表,接着访问.META.表,最后才能找到用户数据的位置去访问,中间需要多次网络操作,不过client端会做cache缓存。

2.2.3 MapReduce on HBase

在HBase系统上运行批处理运算,最方便和实用的模型依然是MapReduce,如下图:

HBase Table和Region的关系,比较类似HDFS File和Block的关系,HBase提供了配套的TableInputFormat和TableOutputFormat API,可以方便的将HBase Table作为Hadoop MapReduce的Source和Sink,对于MapReduce Job应用开发人员来说,基本不需要关注HBase系统自身的细节。

2.3 HBase系统架构

2.3.1 Client

HBase Client使用HBase的RPC机制与HMaster和HRegionServer进行通信,对于管理类操作,Client与HMaster进行RPC;对于数据读写类操作,Client与HRegionServer进行RPC

2.3.2 Zookeeper

Zookeeper Quorum中除了存储了-ROOT-表的地址和HMaster的地址,HRegionServer也会把自己以Ephemeral方式注册到 Zookeeper中,使得HMaster可以随时感知到各个HRegionServer的健康状态。此外,Zookeeper也避免了HMaster的 单点问题,见下文描述

2.3.3 HMaster

HMaster没有单点问题,HBase中可以启动多个HMaster,通过Zookeeper的Master Election机制保证总有一个Master运行,HMaster在功能上主要负责Table和Region的管理工作:

1. 管理用户对Table的增、删、改、查操作

2. 管理HRegionServer的负载均衡,调整Region分布

3. 在Region Split后,负责新Region的分配

4. 在HRegionServer停机后,负责失效HRegionServer 上的Regions迁移

2.3.4 HRegionServer

HRegionServer主要负责响应用户I/O请求,向HDFS文件系统中读写数据,是HBase中最核心的模块。

HRegionServer内部管理了一系列HRegion对象,每个HRegion对应了Table中的一个 Region,HRegion中由多个HStore组成。每个HStore对应了Table中的一个Column Family的存储,可以看出每个Column Family其实就是一个集中的存储单元,因此最好将具备共同IO特性的column放在一个Column Family中,这样最高效。

个Region,父Region会下线,新Split出的2个孩子Region会被HMaster分配到相应的HRegionServer 上,使得原先1个Region的压力得以分流到2个Region上。下图描述了Compaction和Split的过程:

在理解了上述HStore的基本原理后,还必须了解一下HLog的功能,因为上述的HStore在系统正常工作的前提下是没有问 题的,但是在分布式系统环境中,无法避免系统出错或者宕机,因此一旦HRegionServer意外退出,MemStore中的内存数据将会丢失,这就需要引入HLog了。每个HRegionServer中都有一个HLog对象,HLog是一个实现Write Ahead Log的类,在每次用户操作写入MemStore的同时,也会写一份数据到HLog文件中(HLog文件格式见后续),HLog文件定期会滚动出新的,并 删除旧的文件(已持久化到StoreFile中的数据)。当HRegionServer意外终止后,HMaster会通过Zookeeper感知 到,HMaster首先会处理遗留的 HLog文件,将其中不同Region的Log数据进行拆分,分别放到相应region的目录下,然后再将失效的region重新分配,领取 到这些region的HRegionServer在Load Region的过程中,会发现有历史HLog需要处理,因此会Replay HLog中的数据到MemStore中,然后flush到StoreFiles,完成数据恢复。

2.4 HBase存储格式

HBase中的所有数据文件都存储在Hadoop HDFS文件系统上,主要包括上述提出的两种文件类型:

1.HFile, HBase中KeyValue数据的存储格式,HFile是Hadoop的二进制格式文件,实际上StoreFile就是对HFile做了轻量级包装,即StoreFile底层就是HFile

2.HLog File,HBase中WAL(Write Ahead Log) 的存储格式,物理上是Hadoop的Sequence File

2.4.1 HFile

下图是HFile的存储格式:

首先HFile文件是不定长的,长度固定的只有其中的两块:Trailer和FileInfo。正如图中所示的,Trailer 中有指针指向其他数据块的起始点。File Info中记录了文件的一些Meta信息,例如:AVG_KEY_LEN, AVG_VALUE_LEN, LAST_KEY, COMPARATOR, MAX_SEQ_ID_KEY等。Data Index和Meta Index块记录了每个Data块和Meta块的起始点。

Data Block是HBase I/O的基本单元,为了提高效率,HRegionServer中有基于LRU的Block Cache机制。每个Data块的大小可以在创建一个Table的时候通过参数指定,大号的Block有利于顺序Scan,小号Block利于随机查询。 每个Data块除了开头的Magic以外就是一个个KeyValue对拼接而成, Magic内容就是一些随机数字,目的是防止数据损坏。后面会详细介绍每个KeyValue对的内部构造。

HFile里面的每个KeyValue对就是一个简单的byte数组。但是这个byte数组里面包含了很多项,并且有固定的结构。我们来看看里面的具体结构:

开始是两个固定长度的数值,分别表示Key的长度和Value的长度。紧接着是Key,开始是固定长度的数值,表示RowKey 的长度,紧接着是RowKey,然后是固定长度的数值,表示Family的长度,然后是Family,接着是Qualifier,然后是两个固定长度的数 值,表示Time Stamp和Key Type(Put/Delete)。Value部分没有这么复杂的结构,就是纯粹的二进制数据了。

2.4.2 HLogFile

,或者是最近一次存入文件系统中sequence number。

HLog Sequece File的Value是HBase的KeyValue对象,即对应HFile中的KeyValue,可参见上文描述。

、安装部署HBase

3.1 安装过程

3.1.1 下载HBase安装包

从Apache网站上(hbase.apache.org)下载HBase稳定发布包:

http://mirrors.cnnic.cn/apache/hbase/hbase-0.96.2/

也可以在/home/shiyanlou/install-pack目录中找到该安装包,解压该安装包并把该安装包复制到/app目录中

cd /home/shiyanlou/install-pack

tar -zxf hbase-0.96.2-hadoop1-bin.tar.gz

mv hbase-0.96.2-hadoop1 /app/hbase-0.96.2

3.1.2 设置环境变量

1. 使用sudo vi /etc/profile命令修改系统环境变量

export HBASE_HOME=/app/hbase-0.96.2

export PATH=$PATH:$HBASE_HOME/bin

2. 使环境变量生效并验证环境变量生效

source /etc/profile

hbase version

3.1.3 编辑hbase-env.sh

1. 打开hbase-env.sh文件

cd /app/hbase-0.96.2/conf

sudo vi hbase-env.sh

2. 修改该文件配置

#Java环境

export JAVA_HOME=/app/lib/jdk1.7.0_55

#通过hadoop的配置文件找到hadoop集群

export HBASE_CLASSPATH=/app/hadoop-1.1.2/conf

#使用HBASE自带的zookeeper管理集群

export HBASE_MANAGES_ZK=true

3.1.4 编辑hbase-site.xml

1. 打开hbase-site.xml配置文件

cd /app/hbase-0.96.2/conf

sudo vi hbase-site.xml

2. 配置hbase-site.xml文件

<configuration>

  <property>

     <name>hbase.rootdir</name>

     <value>hdfs://hadoop:9000/hbase</value>

  </property>

  <property>

     <name>hbase.cluster.distributed</name>

     <value>true</value>

  </property>

  <property>

    <name>hbase.zookeeper.quorum</name>

    <value>b393a04554e1</value>

  </property>

</configuration>

3.2 启动并验证

3.2.1 启动HBase

通过如下命令启动Hbase

cd /app/hbase-0.96.2/bin

./start-hbase.sh

3.2.2 验证启动

1. 在hadoop节点使用jps查看节点状态

2. 进入hbase的shell命令行,创建表member并进行查看

hbase shell

hbase>create 'member', 'm_id', 'address', 'info'

、测试例子

4.1 测试说明

这里我们用一个学生成绩表作为例子,对HBase的基本操作和基本概念进行讲解:

下面是学生的成绩表:

name   grad      course:math   course:art

Tom     1            87           97

Jerry     2           100          80

这里grad对于表来说是一个列,course对于表来说是一个列族,这个列族由两个列组成:math和art,当然我们可以根据我们的需要在course中建立更多的列族,如computer,physics等相应的列添加入course列族.

4.2 Shell操作

4.2.1 建立一个表格 scores 具有两个列族grad 和courese

hbase(main):002:0> create 'scores', 'grade', 'course'

4.2.2 查看当先HBase中具有哪些表

hbase(main):003:0> list

4.2.3 查看表的构造

hbase(main):004:0> describe 'scores'

4.2.4 插入数据

给表中 Tom 列族插入数据

hbase(main):005:0> put 'scores', 'Tom', 'grade:', '1'

hbase(main):006:0> put 'scores', 'Tom', 'course:math', '87'

hbase(main):007:0> put 'scores', 'Tom', 'course:art', '97'

给表中Jerry 列族插入数据

hbase(main):008:0> put 'scores', 'Jerry', 'grade:', '2'

hbase(main):009:0> put 'scores', 'Jerry', 'course:math', '100'

hbase(main):010:0> put 'scores', 'Jerry', 'course:art', '80'

4.2.5 查看scores表中Tom的相关数据

hbase(main):011:0> get 'scores', 'Tom'

4.2.6 查看scores表中所有数据

hbase(main):012:0> scan 'scores'

Hadoop入门进阶课程10--HBase介绍、安装与应用案例的更多相关文章

  1. Hadoop入门进阶课程13--Chukwa介绍与安装部署

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,博主为石山园,博客地址为 http://www.cnblogs.com/shishanyuan  ...

  2. Hadoop入门进阶课程12--Flume介绍、安装与应用案例

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,博主为石山园,博客地址为 http://www.cnblogs.com/shishanyuan  ...

  3. Hadoop入门进阶课程11--Sqoop介绍、安装与操作

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,博主为石山园,博客地址为 http://www.cnblogs.com/shishanyuan  ...

  4. Hadoop入门进阶课程9--Mahout介绍、安装与应用案例

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,博主为石山园,博客地址为 http://www.cnblogs.com/shishanyuan  ...

  5. Hadoop入门进阶课程7--Pig介绍、安装与应用案例

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,博主为石山园,博客地址为 http://www.cnblogs.com/shishanyuan  ...

  6. Hadoop入门进阶课程8--Hive介绍和安装部署

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,博主为石山园,博客地址为 http://www.cnblogs.com/shishanyuan  ...

  7. Hadoop入门进阶课程1--Hadoop1.X伪分布式安装

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,博主为石山园,博客地址为 http://www.cnblogs.com/shishanyuan  ...

  8. (转)Hadoop入门进阶课程

    http://blog.csdn.net/yirenboy/article/details/46800855 1.Hadoop介绍 1.1Hadoop简介 Apache Hadoop软件库是一个框架, ...

  9. Hadoop入门进阶课程6--MapReduce应用案例

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,博主为石山园,博客地址为 http://www.cnblogs.com/shishanyuan  ...

随机推荐

  1. phpRedis安装、配置及简单使用

    安装phpRedis前,请先安装Redis,再安装phpRedis插件. 1.下载安装 在linux服务器上,命令行执行以下命令(cd ./usr local/src 一般源码放在这里(推荐源码安装) ...

  2. Rdseed与SAC的安装

    欢迎和大家交流技术相关问题: 邮箱: jiangxinnju@163.com 博客园地址: http://www.cnblogs.com/jiangxinnju GitHub地址: https://g ...

  3. MultiTouch————多点触控,伸缩图片,变换图片位置

    前言:当今的手机都支持多点触控功能(可以进行图片伸缩,变换位置),但是我们程序员要怎样结合硬件去实现这个功能呢? 跟随我一起,来学习这个功能 国际惯例:先上DEMO免费下载地址:http://down ...

  4. Unity3d插件汇总

    Unity3d 中的svn插件 插件下载地址:http://www.dehome.net/down/viewfile.php?file_id=53

  5. poj 3250 Bad Hair Day(单调队列)

    题目链接:http://poj.org/problem?id=3250 思路分析:题目要求求每头牛看见的牛的数量之和,即求每头牛被看见的次数和:现在要求如何求出每头牛被看见的次数? 考虑到对于某头特定 ...

  6. Struts+Spring+Hibernate、MVC、HTML、JSP

    javaWeb应用 JavaWeb使用的技术,比如SSH(Struts.Spring.Hibernate).MVC.HTML.JSP等等技术,利用这些技术开发的Web应用在政府项目中非常受欢迎. 先说 ...

  7. elasticsearch 学习

    docker run -p : -d elasticsearch #直接拉取运行 #指定条件搜索curl --request GET \ --url 'http://localhost:9200/im ...

  8. [Swift]LeetCode877. 石子游戏 | Stone Game

    Alex and Lee play a game with piles of stones.  There are an even number of piles arranged in a row, ...

  9. RT throttling分析【转】

    转自:https://blog.csdn.net/u012728256/article/details/72639612 Linux上调度策略为SCHED_FIFO的实时进程是根据优先级抢占运行的.当 ...

  10. 19-07 【docker】随笔笔记

    小tips: 1,在nginx的镜像中,并未包含ping工具: 2,在busybox的镜像中,是包含ping工具和telnet工具的,所以如果想测试互通性,可以利用busybox来检查: 实验1:利用 ...