题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5373

The shortest problem

Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 995    Accepted Submission(s):
498

Problem Description
In this problem, we should solve an interesting game.
At first, we have an integer n, then we begin to make some funny change. We sum
up every digit of the n, then insert it to the tail of the number n, then let
the new number be the interesting number n. repeat it for t times. When n=123
and t=3 then we can get 123->1236->123612->12361215.
 
Input
Multiple input.
We have two integer n
(0<=n<=104 ) , t(0<=t<=105 ) in each row.
When n==-1 and t==-1 mean the end of input.
 
Output
For each input , if the final number are divisible by
11, output “Yes”, else output ”No”. without quote.
 
Sample Input
35 2
35 1
-1 -1
 
Sample Output
Case #1: Yes
Case #2: No
 
Source
 
 
 
题目大意:将前面的数加起来的得到的和接在后面,并判断最后得到的这个数是否可以被11整除。例如:23->一次变换后235->两次变换后23510
解题思路:想象一下,除以11是怎么除的,每次都是前面的先除存下余数加上后面的继续除。这样的话就算104也不在话下。这里要注意的是后面接上的数字不一定是一位数两位数or三位数。所以要特殊判断下,第一个剩下的余数要乘以几个10。
 
详见代码。(这个需要用G++提交)

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath> using namespace std; int fun(int n)
{
int sum=;
while (n)
{
int a1=n%;
sum+=a1;
n/=;
}
return sum;
} int fun1(int x)
{
int t=;
while (x)
{
t++;
x/=;
}
return t;
} int fun2(int n)
{
int s=;
for (int i=;i<n;i++)
{
s*=;
}
return s;
} int main()
{
int n,t;
int flag=;
while (~scanf("%d%d",&n,&t))
{
if (n==-&&t==-)
break;
int ans=n%;
//cout<<ans<<endl;
int ss=fun(n);
for (int i=; i<t; i++)
{
ans=ans*fun2(fun1(ss))+ss;//pow(10,fun1(ss))+ss;
//cout<<ans<<endl;
ans%=;
//cout<<ans<<endl;
ss+=fun(ss);
//cout<<ss<<endl;
}
if (ans%==)
printf ("Case #%d: Yes\n",flag++);
else
printf ("Case #%d: No\n",flag++);
}
return ;
}

还有另外一种比较省时间的代码。

能被11整除的数的特征 
把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。

详见代码。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;
#define ll long long
const double eps = 1e-;
const double pi = acos(-1.0);
const int INF = 0x3f3f3f3f;
const int MOD = ; int n,t;
int x,y,k; int main ()
{
int a,b,c,d,e,ii=;
while (scanf ("%d%d",&n,&t)==)
{
if (n==-&&t==-)
break;
a = n/;
b = (n/)%;
c = (n/)%;
d = (n/)%;
e = n%;
//if (d!=0){k++; if(c!=0)k++; if(b!=0)k++; if(a!=0)k++;}
y = d+b;
x = c+a+e; while (t--)
{
k = ;
int p=,q=,m=x+y;
while (m)
{
k++;
if (k%)
p += m%;
else
q += m%;
m /= ;
}
//cout<<p<<" "<<q<<endl;cout<<x<<" "<<y<<endl;
if (k%)
{
x += q;
y += p;
swap(x, y);
}
else
{
x += p;
y += q;
}
}
if ((x-y)%)
printf ("Case #%d: No\n",ii++);
else
printf ("Case #%d: Yes\n",ii++);
}
return ;
}

hdu 5373 The shortest problem(杭电多校赛第七场)的更多相关文章

  1. HDU 4627 The Unsolvable Problem 杭电多校联赛第三场1009 数学题

    题意描述:给出一个n,要求在所有满足n = a+b的a和b里面求a和b的最小公倍数最大的两个数的最小公倍数. 解题报告:比赛的时候看到这个题的第一反应就是寻找这两个数一定是在a和b比较接近的地方找,这 ...

  2. hdu 5328 Problem Killer(杭电多校赛第四场)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5328 题目大意:找到连续的最长的等差数列or等比数列. 解题思路:1.等差等比的性质有很多.其中比较重 ...

  3. hdu 5319 Painter(杭电多校赛第三场)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5319 Painter Time Limit: 2000/1000 MS (Java/Others)   ...

  4. hdu 5326 Work(杭电多校赛第三场)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5326 Work Time Limit: 2000/1000 MS (Java/Others)    M ...

  5. 可持久化线段树的学习(区间第k大和查询历史版本的数据)(杭电多校赛第二场1011)

    以前我们学习了线段树可以知道,线段树的每一个节点都储存的是一段区间,所以线段树可以做简单的区间查询,更改等简单的操作. 而后面再做有些题目,就可能会碰到一种回退的操作.这里的回退是指回到未做各种操作之 ...

  6. 2015 Multi-University Training Contest 7 hdu 5373 The shortest problem

    The shortest problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  7. HDU 5373 The shortest problem (数学)

    题意:给定两个数的n和m,有一种操作,把 n 的各位数字加起来放到 n后面形成一个新数n,问重复 m 次所得的数能否整除 11. 析:这个题首先要知道一个规律奇数位的和减去偶数位的和能被11整除的数字 ...

  8. HDU 4902 Nice boat 2014杭电多校训练赛第四场F题(线段树区间更新)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4902 解题报告:输入一个序列,然后有q次操作,操作有两种,第一种是把区间 (l,r) 变成x,第二种是 ...

  9. HDU 5821 Ball (贪心排序) -2016杭电多校联合第8场

    题目:传送门. 题意:T组数据,每组给定一个n一个m,在给定两个长度为n的数组a和b,再给定m次操作,每次给定l和r,每次可以把[l,r]的数进行任意调换位置,问能否在转换后使得a数组变成b数组. 题 ...

随机推荐

  1. eclipse tomcat add and remove工程异常

    1  eclipse导入工程后,右击server add and remove工程时,there are no resource: 解决方案:右击工程->单击property->选择pro ...

  2. 汇编语言hello world

    DOS下: ;栈段 stack segment stack db dup(?) stack ends ;数据段 data segment szHello db 'Hello,world',0dh,0a ...

  3. Javascript函数声明与函数表达式

    在定义函数时,我们一般使用下面这两种方法: 使用函数声明定义: function sum (a, b) { return a + b; } 使用函数表达式定义: var sum = function ...

  4. hdu 4763 Theme Section(KMP水题)

    Theme Section Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  5. Servlet 下载文件

    这几天有点懒散,还好没有忘记看书,上周去了国家图书馆翻阅了一些和Java相关的书籍,其实这些书都是自己以前看过或者听过,按理来说,不应该看自己已经看过的书籍,应该找一些最新的书籍去看,但是每次走到书架 ...

  6. Github 初识(上传、下载)

    Git - 版本控制工具Github - 一个网站,提供给用户空间创建git仓储,保存用户的一些数据文档或者代码等GitLab - 基于Git的项目管理软件   上传 1 首先在Github 上注册一 ...

  7. Linux下关闭Tomcat残留线程

    ps -ef | grep tomcat kill -9 {pid}

  8. MT【287】余弦的线性组合

    (2017北大特优)在$\Delta ABC$中,$cos A+\sqrt{2}cos B+\sqrt{2}cos C$的最大值____ 解答 :2$cos A+\sqrt{2}cos B+\sqrt ...

  9. BOM简介

    BOM简介 BOM Browser Object Model 浏览器对象模型 // 通过window对象来访问浏览器 console.log(window.document); // frames:当 ...

  10. KCP 传输协议

    作者:韦易笑链接:https://www.zhihu.com/question/36258781/answer/98944369来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...