Pick apples

Time Limit: 1000MS Memory limit: 165536K

题目描述

Once ago, there is a mystery yard which only produces three kinds of apples. The number of each kind is infinite. A girl carrying a big bag comes into the yard. She is so surprised because she has never seen so many apples before. Each kind
of apple has a size and a price to be sold. Now the little girl wants to gain more profits, but she does not know how. So she asks you for help, and tell she the most profits she can gain.

输入

In the first line there is an integer T (T <= 50), indicates the number of test cases.

In each case, there are four lines. In the first three lines, there are two integers S and P in each line, which indicates the size (1 <= S<= 100) and the price (1 <= P <= 10000) of this kind of apple.

In the fourth line there is an integer V,(1 <= V <= 100,000,000)indicates the volume of the girl's bag.

输出

For each case, first output the case number then follow the most profits she can gain.

示例输入

1 1
1 2 
1 3 
1 6

示例输出

Case 1: 6

提示

 

来源

2012年"浪潮杯"山东省第三届ACM大学生程序设计竞赛

解题思路:

从昨天赛完就开始弄这道题,当时做的时候第一感觉就是完全背包,但是数据量太大了,直接完全背包肯定会超时。赛后看解题报告才知道这题用的是大范围贪心,小范围完全背包,这个也好懂,看了网上AC的代码小范围用的是1000,但这个今天被老师证实是错误的,这题后台测试数据不完善,比如老师给的这组测试数据:

98 99

99 100

100 101

2000        这组测试数据用小范围为1000的代码测试结果为2000,但是正确答案应该是2020,虽然第一种是最优的东西,但是这里我们要全部选择第三种100 101的才是正确答案。所以小范围为1000是错误的,这里的小范围应该是三种物品容量的最小公倍数,即100*100*100,用1000000就可以了。做这个题花了真不少功夫,整个上午差不多就是在runtime error 和 wrong answer中度过的。找错找了很久。注意的是:限定的容量V要用long long类型,dp[]数组也要用
long long类型。dp[]数组不能只开1000000个,要尽量大点,因为在贪心部分只选择最优的那种物品,但是大于1000000的那部分不一定能整除该物品的容量,也就是说可能会剩余一部分容量加到1000000里面一起用完全背包来做。这个就是无数次runtime error的原因所在。后来又看到一种解法,特别巧妙,没有用到贪心和背包,就是枚举除了最优物品之外的两外两种背包的选择的个数,这里有一个限定条件,那就是不是最优物品的物品被选择的个数一定比最优物品的容量要小,

比如这组测试数据;

最优物品 3   6

其他         2    3      选一个 2 3 选两个  4  6  选三个6  9 但这时候我们选2个最优物品的情况是 6 12,显然比选三个其他物品要好,也就是说其他物品可能选的个数的情况有0 个,1个,2个。这些都是有可能的,本题背包的容量都小于100,所以两层循环枚举其他两种物品被选择的个数,在计算中取最大值就可以了,复杂度为0(100*100)。

第一种方法(排序做的贪心+完全背包):

#include <iostream>
#include <string.h>
#include <algorithm>
using namespace std;
const int lcm=1000000;//三种类size的最小公倍数
long long dp[lcm*2+2],V;//dp数组要开的足够大,不能只开lcm个,原因见后面注释,还有V要用long long struct N
{
int s,p;
double pri;
}node[3]; bool cmp(N a ,N b)
{
return a.pri<b.pri;
}
long long maxll(long long a,long long b)
{
return a>b?a:b;
} void compack()//完全背包
{
memset(dp,0,sizeof(dp));
for(int i=0;i<3;i++)
for(int j=node[i].s;j<=V;j++)
dp[j]=maxll(dp[j],dp[j-node[i].s]+node[i].p);
} int main()
{
int t;cin>>t;int c=1;
while(t--)
{
for(int i=0;i<3;i++)
{
cin>>node[i].s>>node[i].p;
node[i].pri=node[i].s*1.0/node[i].p;
}
cin>>V;
if(V<=lcm)//小范围直接完全背包
{
compack();
cout<<"Case "<<c++<<": "<<dp[V]<<endl;
}
else
{
sort(node,node+3,cmp);//排序,最优的在第一个
V-=lcm;//超出1000000的部分
long long ans=0;
ans=ans+(V/node[0].s*node[0].p);//贪心部分选择第一个所获得的价值
V=lcm+(V-V/node[0].s*node[0].s);//这里解释了为什么dp要开的足够大,不能只开lcm个,因为在贪心部分不一定能整除,有余下的部分
compack();//完全背包
cout<<"Case "<<c++<<": "<<ans+dp[V]<<endl;
}
}
return 0;
}

第二种方法(未排序的贪心+完全背包):

#include <iostream>
#include <string.h>
using namespace std;
const int lcm=1000000;
long long dp[lcm*2+2],V;
int s[5],p[5]; void compack()
{
memset(dp,0,sizeof(dp));
for(int i=0;i<3;i++)
for(int j=s[i];j<=V;j++)
{
if(dp[j]<dp[j-s[i]]+p[i])
dp[j]=dp[j-s[i]]+p[i];
}
}
int main()
{
int t;cin>>t;int c=1;
while(t--)
{
double pr,temp=0;
int id;
for(int i=0;i<3;i++)
{
cin>>s[i]>>p[i];
pr=1.0*p[i]/s[i];
if(temp<pr)
{
temp=pr;
id=i;
}
}
cin>>V; if(V<=lcm)
{
compack();
cout<<"Case "<<c++<<": "<<dp[V]<<endl;
}
else
{
long long ans=(V-lcm)/s[id]*p[id];
V=V-(V-lcm)/s[id]*s[id];
compack();
cout<<"Case "<<c++<<": "<<ans+dp[V]<<endl;
}
}
}

第三种方法(枚举未排序):

#include <iostream>
#include <stdio.h>
using namespace std;
int s[4],p[4]; long long llmax(long long a,long long b)
{
return a>b?a:b;
}
int main()
{
int t;
cin>>t;
int c=1;
while(t--)
{
for(int i=1; i<=3; i++)
cin>>s[i]>>p[i];
int V;
cin>>V;
int k1=1,k2,k3;
for(int i=2; i<=3; i++)
{
if(p[i]*s[k1]>p[k1]*s[i])//判断优先级
k1=i;
}
if(k1==1){k2=2;k3=3;};//k1是最优的物品,k2,k3是谁没有关系
if(k1==2){k2=1,k3=3;};
if(k1==3){k2=1,k3=2;};
long long ans=0;
for(int i=0; i<s[k1]; i++)//枚举
{
for(int j=0; j<s[k1]; j++)
{
long long temp=i*s[k2]+j*s[k3];
if(temp>V)
break;
else
{
long long v=V-temp;
ans=llmax(ans,v/s[k1]*p[k1]+i*p[k2]+j*p[k3]);//选最大值
}
}
}
cout<<"Case "<<c++<<": "<<ans<<endl;
}
return 0;
}

第四种方法(排序枚举):

#include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std; struct N
{
int s,p;
double pri;
}node[4]; bool cmp(N a,N b)
{
if(a.pri<b.pri)
return true;
return false;
} long long llmax(long long a,long long b)
{
return a>b?a:b;
} int main()
{
int t;
cin>>t;
int c=1;
while(t--)
{
for(int i=0; i<3; i++)
{
cin>>node[i].s>>node[i].p;
node[i].pri=1.0*node[i].s/(1.0*node[i].p);
}
int V;
cin>>V;
sort(node,node+3,cmp);
long long ans=0;
for(int i=0; i<node[0].s; i++)
{
for(int j=0; j<node[0].s; j++)
{
long long temp=i*node[1].s+j*node[2].s;
if(temp>V)
break;
else
{
long long v=V-temp;
ans=llmax(ans,v/node[0].s*node[0].p+i*node[1].p+j*node[2].p);
}
}
}
cout<<"Case "<<c++<<": "<<ans<<endl;
}
return 0;
}

[2012山东ACM省赛] Pick apples (贪心,完全背包,枚举)的更多相关文章

  1. [2012山东ACM省赛] Pick apples (贪心,全然背包,枚举)

    Pick apples Time Limit: 1000MS Memory limit: 165536K 题目描写叙述 Once ago, there is a mystery yard which ...

  2. 10年省赛-Greatest Number (二分+暴力) + 12年省赛-Pick apples(DP) + UVA 12325(暴力-2次枚举)

    题意:给你n个数,在里面取4个数,可以重复取数,使和不超过M,求能得到的最大的数是多少: 思路:比赛时,和之前的一个题目很像,一直以为是体积为4(最多选择四次)的完全背包,结果并不是,两两求和,然后二 ...

  3. 山东ACM省赛历届入口

    山东省第一届ACM大学生程序设计竞赛 山东省第二届ACM大学生程序设计竞赛 山东省第三届ACM大学生程序设计竞赛 山东省第四届ACM大学生程序设计竞赛 山东省第五届ACM大学生程序设计竞赛 山东省第六 ...

  4. [2011山东ACM省赛] Sequence (动态规划)

    Sequence Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 Given an integer number sequence ...

  5. [2011山东ACM省赛] Identifiers(模拟)

    Identifiers Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描写叙述  Identifier is an important ...

  6. [2013山东ACM]省赛 The number of steps (可能DP,数学期望)

    The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...

  7. [2011山东ACM省赛] Mathman Bank(模拟题)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/sr19930829/article/details/24187925 Mathman Bank ni ...

  8. [2011山东ACM省赛] Binomial Coeffcients(求组合数)

    Binomial Coeffcients nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...

  9. 第八届山东ACM省赛F题-quadratic equation

    这个题困扰了我长达1年多,终于在今天下午用两个小时理清楚啦 要注意的有以下几点: 1.a=b=c=0时 因为x有无穷种答案,所以不对 2.注意精度问题 3.b^2-4ac<0时也算对 Probl ...

随机推荐

  1. php在window下的环境配置(VC9)

    配置PHP5:  1. 配置PHP5.3.3,打开php安装目录(笔者是D:\php\php5)可以看到目录下有两个这样的文件php.ini-    development和php.ini-produ ...

  2. 【转】一个高端.NET技术人才的2014年度总结

    [转]一个高端.NET技术人才的2014年度总结  本人在一家公司做技术负责人.主要从事的是.net方面的开发与管理,偏重开发. 弹指一挥间,时间飘然而过,转眼又是一年. 回顾2014年,是我人生中最 ...

  3. 代理服务器基本知识普及代理IP使用方法!

    本文并未从专业角度进行详细讲解,而是从应用的角度出发来普及一些代理服务器的基本知识.文章明显是搜集多方资料的拼凑,而且比较老了,但往往越老的东西越接近事物的本质,更容易窥探到原理,对于刚接触的人来说, ...

  4. 关于 android Intent 传对象和对象数组的一些操作

    直接开正题,Intent传递值就是平常那些很简单的,接下来介绍传递 对象,和 对象数组 1 .intent 传递自定义的 对象 - 实体类继承  Serializable public class A ...

  5. mysql denied for user &#39;root&#39;@&#39;localhost&#39;

    Access[root@log01 ~]# mysql -u root -p Enter password: ERROR 1045 (28000): Access denied for user 'r ...

  6. Linux基础:用tcpdump抓包

    简介 网络数据包截获分析工具.支持针对网络层.协议.主机.网络或端口的过滤.并提供and.or.not等逻辑语句帮助去除无用的信息. tcpdump - dump traffic on a netwo ...

  7. CSS的应用下

    样式继承: 就是父类的颜色如果变了,子类下的div(或者其他属性)会继承父类的. 参考代码: <!DOCTYPE html> <html lang="en"> ...

  8. TensorFlow,Keras限制GPU显存

    运行TensorFlow程序会占用过多的显卡比例,多人共同使用GPU的时候,会造成后面的人无法运行程序. 一.TensorFlow 1.预加载比例限制 tf_config = tensorflow.C ...

  9. Python作用域详述

    作用域是指变量的生效范围,例如本地变量.全局变量描述的就是不同的生效范围. python的变量作用域的规则非常简单,可以说是所有语言中最直观.最容易理解的作用域. 在开始介绍作用域之前,先抛一个问题: ...

  10. ZooKeeper 集群的安装部署

    0. 说明 ZooKeeper 安装在 s102.s103.s104上,这三个节点同时是 Hadoop 的 DataNode 1. ZooKeeper 本地模式安装配置 1.0 在 s101 上进行安 ...