url: https://github.com/fxsjy/jieba/blob/master/

jieba

“结巴”中文分词:做最好的 Python 中文分词组件

"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.

  • Scroll down for English documentation.

特点

  • 支持三种分词模式:

    • 精确模式,试图将句子最精确地切开,适合文本分析;
    • 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
    • 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
  • 支持繁体分词

  • 支持自定义词典

  • MIT 授权协议

友情链接

安装说明

代码对 Python 2/3 均兼容

  • 全自动安装:easy_install jieba 或者 pip install jieba / pip3 install jieba
  • 半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py install
  • 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录
  • 通过 import jieba 来引用

算法

  • 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)
  • 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
  • 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法

主要功能

  1. 分词

  • jieba.cut 方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型
  • jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
  • 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8
  • jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用
  • jieba.lcut 以及 jieba.lcut_for_search 直接返回 list
  • jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射。

代码示例

# encoding=utf-8
import jieba seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print("Full Mode: " + "/ ".join(seg_list)) # 全模式 seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("Default Mode: " + "/ ".join(seg_list)) # 精确模式 seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式
print(", ".join(seg_list)) seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
print(", ".join(seg_list))

输出:

【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学

【精确模式】: 我/ 来到/ 北京/ 清华大学

【新词识别】:他, 来到, 了, 网易, 杭研, 大厦    (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)

【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造

载入词典

  • 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率
  • 用法: jieba.load_userdict(file_name) # file_name 为文件类对象或自定义词典的路径
  • 词典格式和 dict.txt 一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。
  • 词频省略时使用自动计算的能保证分出该词的词频。

例如:

创新办 3 i
云计算 5
凱特琳 nz
台中

调整词典

  • 使用 add_word(word, freq=None, tag=None) 和 del_word(word) 可在程序中动态修改词典。

  • 使用 suggest_freq(segment, tune=True) 可调节单个词语的词频,使其能(或不能)被分出来。

  • 注意:自动计算的词频在使用 HMM 新词发现功能时可能无效。

代码示例:

>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中将/出错/。
>>> jieba.suggest_freq(('中', '将'), True)
494
>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中/将/出错/。
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台/中/」/正确/应该/不会/被/切开
>>> jieba.suggest_freq('台中', True)
69
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台中/」/正确/应该/不会/被/切开
  1. 关键词提取

基于 TF-IDF 算法的关键词抽取

import jieba.analyse

  • jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())

    • sentence 为待提取的文本
    • topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
    • withWeight 为是否一并返回关键词权重值,默认值为 False
    • allowPOS 仅包括指定词性的词,默认值为空,即不筛选
  • jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件

代码示例 (关键词提取)

https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py

关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径

关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径

关键词一并返回关键词权重值示例

基于 TextRank 算法的关键词抽取

  • jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) 直接使用,接口相同,注意默认过滤词性。
  • jieba.analyse.TextRank() 新建自定义 TextRank 实例

算法论文: TextRank: Bringing Order into Texts

基本思想:

  1. 将待抽取关键词的文本进行分词
  2. 以固定窗口大小(默认为5,通过span属性调整),词之间的共现关系,构建图
  3. 计算图中节点的PageRank,注意是无向带权图

使用示例:

见 test/demo.py

  1. 词性标注

  • jieba.posseg.POSTokenizer(tokenizer=None) 新建自定义分词器,tokenizer 参数可指定内部使用的 jieba.Tokenizer 分词器。jieba.posseg.dt 为默认词性标注分词器。
  • 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。
  • 用法示例
>>> import jieba.posseg as pseg
>>> words = pseg.cut("我爱北京天安门")
>>> for word, flag in words:
... print('%s %s' % (word, flag))
...
我 r
爱 v
北京 ns
天安门 ns
  1. 并行分词

  • 原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升

  • 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows

  • 用法:

    • jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数
    • jieba.disable_parallel() # 关闭并行分词模式
  • 例子:https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py

  • 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。

  • 注意:并行分词仅支持默认分词器 jieba.dt 和 jieba.posseg.dt

  1. Tokenize:返回词语在原文的起止位置

  • 注意,输入参数只接受 unicode
  • 默认模式
result = jieba.tokenize(u'永和服装饰品有限公司')
for tk in result:
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
word 永和                start: 0                end:2
word 服装 start: 2 end:4
word 饰品 start: 4 end:6
word 有限公司 start: 6 end:10
  • 搜索模式
result = jieba.tokenize(u'永和服装饰品有限公司', mode='search')
for tk in result:
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
word 永和                start: 0                end:2
word 服装 start: 2 end:4
word 饰品 start: 4 end:6
word 有限 start: 6 end:8
word 公司 start: 8 end:10
word 有限公司 start: 6 end:10
  1. ChineseAnalyzer for Whoosh 搜索引擎

  1. 命令行分词

使用示例:python -m jieba news.txt > cut_result.txt

命令行选项(翻译):

使用: python -m jieba [options] filename

结巴命令行界面。

固定参数:
filename 输入文件 可选参数:
-h, --help 显示此帮助信息并退出
-d [DELIM], --delimiter [DELIM]
使用 DELIM 分隔词语,而不是用默认的' / '。
若不指定 DELIM,则使用一个空格分隔。
-p [DELIM], --pos [DELIM]
启用词性标注;如果指定 DELIM,词语和词性之间
用它分隔,否则用 _ 分隔
-D DICT, --dict DICT 使用 DICT 代替默认词典
-u USER_DICT, --user-dict USER_DICT
使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用
-a, --cut-all 全模式分词(不支持词性标注)
-n, --no-hmm 不使用隐含马尔可夫模型
-q, --quiet 不输出载入信息到 STDERR
-V, --version 显示版本信息并退出 如果没有指定文件名,则使用标准输入。

--help 选项输出:

$> python -m jieba --help
Jieba command line interface. positional arguments:
filename input file optional arguments:
-h, --help show this help message and exit
-d [DELIM], --delimiter [DELIM]
use DELIM instead of ' / ' for word delimiter; or a
space if it is used without DELIM
-p [DELIM], --pos [DELIM]
enable POS tagging; if DELIM is specified, use DELIM
instead of '_' for POS delimiter
-D DICT, --dict DICT use DICT as dictionary
-u USER_DICT, --user-dict USER_DICT
use USER_DICT together with the default dictionary or
DICT (if specified)
-a, --cut-all full pattern cutting (ignored with POS tagging)
-n, --no-hmm don't use the Hidden Markov Model
-q, --quiet don't print loading messages to stderr
-V, --version show program's version number and exit If no filename specified, use STDIN instead.

延迟加载机制

jieba 采用延迟加载,import jieba 和 jieba.Tokenizer() 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。

import jieba
jieba.initialize() # 手动初始化(可选)

在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:

jieba.set_dictionary('data/dict.txt.big')

例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py

其他词典

  1. 占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small

  2. 支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big

下载你所需要的词典,然后覆盖 jieba/dict.txt 即可;或者用 jieba.set_dictionary('data/dict.txt.big')

分词速度

  • 1.5 MB / Second in Full Mode
  • 400 KB / Second in Default Mode
  • 测试环境: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt

常见问题

1. 模型的数据是如何生成的?

详见: https://github.com/fxsjy/jieba/issues/7

2. “台中”总是被切成“台 中”?(以及类似情况)

P(台中) < P(台)×P(中),“台中”词频不够导致其成词概率较低

解决方法:强制调高词频

jieba.add_word('台中') 或者 jieba.suggest_freq('台中', True)

3. “今天天气 不错”应该被切成“今天 天气 不错”?(以及类似情况)

解决方法:强制调低词频

jieba.suggest_freq(('今天', '天气'), True)

或者直接删除该词 jieba.del_word('今天天气')

4. 切出了词典中没有的词语,效果不理想?

解决方法:关闭新词发现

jieba.cut('丰田太省了', HMM=False) jieba.cut('我们中出了一个叛徒', HMM=False)

更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed

 

jieba初的更多相关文章

  1. python jieba分词(添加停用词,用户字典 取词频

    中文分词一般使用jieba分词 1.安装 pip install jieba 2.大致了解jieba分词 包括jieba分词的3种模式 全模式 import jieba seg_list = jieb ...

  2. jieba分词-强大的Python 中文分词库

    1. jieba的江湖地位 NLP(自然语言)领域现在可谓是群雄纷争,各种开源组件层出不穷,其中一支不可忽视的力量便是jieba分词,号称要做最好的 Python 中文分词组件. 很多人学习pytho ...

  3. .NET平台开源项目速览(15)文档数据库RavenDB-介绍与初体验

    不知不觉,“.NET平台开源项目速览“系列文章已经15篇了,每一篇都非常受欢迎,可能技术水平不高,但足够入门了.虽然工作很忙,但还是会抽空把自己知道的,已经平时遇到的好的开源项目分享出来.今天就给大家 ...

  4. Xamarin+Prism开发详解四:简单Mac OS 虚拟机安装方法与Visual Studio for Mac 初体验

    Mac OS 虚拟机安装方法 最近把自己的电脑升级了一下SSD固态硬盘,总算是有容量安装Mac 虚拟机了!经过心碎的安装探索,尝试了国内外的各种安装方法,最后在youtube上找到了一个好方法. 简单 ...

  5. Spring之初体验

                                     Spring之初体验 Spring是一个轻量级的Java Web开发框架,以IoC(Inverse of Control 控制反转)和 ...

  6. 【初码干货】使用阿里云对Web开发中的资源文件进行CDN加速的深入研究和实践

    提示:阅读本文需提前了解的相关知识 1.阿里云(https://www.aliyun.com) 2.阿里云CDN(https://www.aliyun.com/product/cdn) 3.阿里云OS ...

  7. Xamarin.iOS开发初体验

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAKwAAAA+CAIAAAA5/WfHAAAJrklEQVR4nO2c/VdTRxrH+wfdU84pW0

  8. 【初码干货】在Window Server 2016中使用Web Deploy方式发布.NET Web应用的重新梳理

    在学习和工作的过程中,发现很多同事.朋友,在做.NET Web应用发布的时候,依然在走 生成-复制到服务器 这样的方式,稍微高级一点的,就是先发布到本地,再上传到服务器 这种方式不仅效率低下,而且不易 ...

  9. 【腾讯Bugly干货分享】基于 Webpack & Vue & Vue-Router 的 SPA 初体验

    本文来自于腾讯bugly开发者社区,非经作者同意,请勿转载,原文地址:http://dev.qq.com/topic/57d13a57132ff21c38110186 导语 最近这几年的前端圈子,由于 ...

  10. 【Knockout.js 学习体验之旅】(1)ko初体验

    前言 什么,你现在还在看knockout.js?这货都已经落后主流一千年了!赶紧去学Angular.React啊,再不赶紧的话,他们也要变out了哦.身旁的90后小伙伴,嘴里还塞着山东的狗不理大蒜包, ...

随机推荐

  1. 微信退款报错 400 the ssl certificatie error / no required SSL certificate was sent ; Guzzle json_encode Type is not supported;

    bug随笔 一 起因. 在做一个点餐类小程序,本地测试ok.上测试的时候,突然就报错,微信退款失败. 二 Debug. 1. Debug trace到页面直接显示的是 : Type is not su ...

  2. 220205_问题解决_python批量创建变量及赋值

    220205_问题解决_python批量创建变量及赋值 当想要创建大量 变量名 有规律的变量.并为其有规律的赋值时,可以使用exec() 函数. exec 执行储存在字符串或文件中的 Python 语 ...

  3. windows2020 更换sid

    cmd whoami /user 查看sid的值 点击运行sysprep程序.记得在"通用"前面打上勾 点击运行sysprep程序.记得在"通用"前面打上勾

  4. K8s网络策略

    Network Policy(网络策略) 默认情况下,k8s集群网络是没有任何限制的,Pod可以和任何其他Pod通信,在某些场景下需要做网络控制,减少网络面的攻击,提高安全性,就会用到网络策略(Net ...

  5. 打卡node day03 --http 内置模块

    1.内置模块 http 2.加上校验 3.cheerio 可以使用jq 里的选择器 4.结合使用 5.获取的数据是http 路径 拿到具体的图片 6.循环图片

  6. 解决MyBatis-Plus修改为null值无效的问题

    @TableField(strategy = FieldStrategy.IGNORED)

  7. openwrt从gitee pull代码并编译go项目

    安装ssh opkg update # openssh-keygen 可以用来生产密钥 opkg install openssh-keygen # 连接其他服务器 opkg install opens ...

  8. pg 窗口函数

    窗口函数基于结果集进行计算,将计算出的结果合并到输出的结果集上,并返回多行.使用窗口函数能大幅度简化SQL代码.gaussdb提供内置的窗口函数,例如row_num().rank().lag()等,除 ...

  9. grpc start with python

    pip install grpcio grpcio-tools syntax = "proto3"; service FutureData { rpc GetTick(ReqTic ...

  10. IDEA导出带源码的war包

    做作业时实验要求导出带源码的war包,网上找了一圈没找着,遂自行探索,摸出了些门道,在此分享. File->Project Structure->Project Setting->A ...