Lambda, filter, reduce and map

Lambda Operator

Some like it, others hate it and many are afraid of the lambda operator. We are confident that you will like it, when you have finished with this chapter of our tutorial. If not, you can learn all about "List Comprehensions", Guido van Rossums preferred way to do it, because he doesn't like Lambda, map, filter and reduce either.

becasu The lambda operator or lambda function is a way to create small anonymous functions, i.e. functions without a name. These functions are throw-away functions, i.e. they are just needed where they have been created. Lambda functions are mainly used in combination with the functions filter(), map() and reduce(). The lambda feature was added to Python due to the demand from Lisp programmers.

The general syntax of a lambda function is quite simple:
lambda argument_list: expression 
The argument list consists of a comma separated list of arguments and the expression is an arithmetic expression using these arguments. You can assign the function to a variable to give it a name. 
The following example of a lambda function returns the sum of its two arguments:

>>> f = lambda x, y : x + y
>>> f(1,1)
2

The map() Function

The advantage of the lambda operator can be seen when it is used in combination with the map() function. 
map() is a function with two arguments:

r = map(func, seq)

The first argument func is the name of a function and the second a sequence (e.g. a list) seqmap() applies the function func to all the elements of the sequence seq. It returns a new list with the elements changed by func

def fahrenheit(T):
    return ((float(9)/5)*T + 32)
def celsius(T):
    return (float(5)/9)*(T-32)
temp = (36.5, 37, 37.5,39)

F = map(fahrenheit, temp)
C = map(celsius, F)

In the example above we haven't used lambda. By using lambda, we wouldn't have had to define and name the functions fahrenheit() and celsius(). You can see this in the following interactive session:

>>> Celsius = [39.2, 36.5, 37.3, 37.8]
>>> Fahrenheit = map(lambda x: (float(9)/5)*x + 32, Celsius)
>>> print Fahrenheit
[102.56, 97.700000000000003, 99.140000000000001, 100.03999999999999]
>>> C = map(lambda x: (float(5)/9)*(x-32), Fahrenheit)
>>> print C
[39.200000000000003, 36.5, 37.300000000000004, 37.799999999999997]
>>> 

map() can be applied to more than one list. The lists have to have the same length. map() will apply its lambda function to the elements of the argument lists, i.e. it first applies to the elements with the 0th index, then to the elements with the 1st index until the n-th index is reached:

>>> a = [1,2,3,4]
>>> b = [17,12,11,10]
>>> c = [-1,-4,5,9]
>>> map(lambda x,y:x+y, a,b)
[18, 14, 14, 14]
>>> map(lambda x,y,z:x+y+z, a,b,c)
[17, 10, 19, 23]
>>> map(lambda x,y,z:x+y-z, a,b,c)
[19, 18, 9, 5]

We can see in the example above that the parameter x gets its values from the list a, while y gets its values from b and z from list c.

Filtering

The function filter(function, list) offers an elegant way to filter out all the elements of a list, for which the function function returns True. 
The function filter(f,l) needs a function f as its first argument. f returns a Boolean value, i.e. either True or False. This function will be applied to every element of the list l. Only if f returns True will the element of the list be included in the result list.

>>> fib = [0,1,1,2,3,5,8,13,21,34,55]
>>> result = filter(lambda x: x % 2, fib)
>>> print result
[1, 1, 3, 5, 13, 21, 55]
>>> result = filter(lambda x: x % 2 == 0, fib)
>>> print result
[0, 2, 8, 34]
>>> 

Reducing a List

The function reduce(func, seq) continually applies the function func() to the sequence seq. It returns a single value.

If seq = [ s1, s2, s3, ... , sn ], calling reduce(func, seq) works like this:

  • At first the first two elements of seq will be applied to func, i.e. func(s1,s2) The list on which reduce() works looks now like this: [ func(s1, s2), s3, ... , sn ]
  • In the next step func will be applied on the previous result and the third element of the list, i.e. func(func(s1, s2),s3)
    The list looks like this now: [ func(func(s1, s2),s3), ... , sn ]
  • Continue like this until just one element is left and return this element as the result of reduce()

We illustrate this process in the following example:

>>> reduce(lambda x,y: x+y, [47,11,42,13])
113

The following diagram shows the intermediate steps of the calculation: 

Examples of reduce()

Determining the maximum of a list of numerical values by using reduce:

>>> f = lambda a,b: a if (a > b) else b
>>> reduce(f, [47,11,42,102,13])
102
>>> 

Calculating the sum of the numbers from 1 to 100:

>>> reduce(lambda x, y: x+y, range(1,101))
5050

来源链接:

http://www.python-course.eu/lambda.php

Python中Lambda, filter, reduce and map 的区别的更多相关文章

  1. Python 函数式编程 & Python中的高阶函数map reduce filter 和sorted

    1. 函数式编程 1)概念 函数式编程是一种编程模型,他将计算机运算看做是数学中函数的计算,并且避免了状态以及变量的概念.wiki 我们知道,对象是面向对象的第一型,那么函数式编程也是一样,函数是函数 ...

  2. Python 3. 里filter与generator expression的区别

    # -*- coding: utf-8 -*- """ A test to show the difference between filter and genrator ...

  3. Python基础学习-Python中最常见括号()、[]、{}的区别

    Python中最常见括号的区别: 在Python语言中最常见的括号有三种,分别是:小括号().中括号[].花括号{}:其作用也不相同,分别用来代表不同的Python基本内置数据类型. Python中的 ...

  4. 关于python中赋值、浅拷贝、深拷贝之间区别的深入分析

    当重新学习了计算机基础课程<数据结构和算法分析>后再来看这篇自己以前写的博文,发现错误百出.python内置数据类型之所以会有这些特性,归根结底是它采用的是传递内存地址的方式,而不是传递真 ...

  5. Python中function(函数)和methon(方法)的区别

    在Python中,对这两个东西有明确的规定: 函数function —— A series of statements which returns some value to a caller. It ...

  6. python中lambda表达式应用

    对于简单的函数,也存在一种简便的表示方式,即:lambda表达式 #普通函数1 def func(a): return a+1 print 'test1_func0:',func(1000)4#lam ...

  7. python中lambda函数

    1.lambda函数使用如下: lambda语句中,冒号前是参数,可以有多个,用逗号隔开,冒号右侧的是返回值 >>> g=lambda x,y:x*y>>> g(4 ...

  8. Python中lambda表达式学习

    lambda只是一个表达式,函数体比def简单很多. lambda的主体是一个表达式,而不是一个代码块.仅仅能在lambda表达式中封装有限的逻辑进去. lambda表达式是起到一个函数速写的作用.允 ...

  9. Python中lambda用法

    lambda只是一个表达式,函数体比def简单很多. lambda的主体是一个表达式,而不是一个代码块.仅仅能在lambda表达式中封装有限的逻辑进去. lambda表达式是起到一个函数速写的作用.允 ...

随机推荐

  1. KEGG数据库的使用方法与介绍

    KEGG数据库的使用方法与介绍 KEGG的数据 KEGG中的pathway是根据相关知识手绘的,这里的手绘的意思可能是指人工以特定的语言格式来确定通路各组件的联系:基因组信息主要是从NCBI等数据库中 ...

  2. Oracle 查看某表 被哪些表外键引用

    分2步骤: 1. select * from user_constraints e where e.table_name='xxx'; 2. select a.constraint_type,a.ta ...

  3. ./upload/forum.php

    这是forum.php的全部代码,然后试着读一读,自己做做笔记. define('APPTYPEID', 2); define('CURSCRIPT', 'forum'); define(); 定义常 ...

  4. SAP HANA企业级培训系列课程&lt;第一部分&gt;

    No. 课程 备注 1 HANA概述 HANA 特点 2 HANA Server & Studio & Client 认识HANA Server \Client\ Studio, 熟悉 ...

  5. AngularJS 学习之路(1)

    AngularJS 是一个 JS 框架,适用于以数据操作为主的 SPA (Single Page Application)应用. 不再是 "先查找元素在操作元素",所有操作都以 & ...

  6. day4之函数

    很快就第4天了,原来人是有惰性的,博客现在就不想写了,真是悲催,坚持,憋住. 函数 def func(name): print(name) func("huihuang") 函数定 ...

  7. 【转】IOS开发中图片资源使用png还是jpg格式

    对于iOS本地应用程序来说最简单的答案就是始终使用PNG,除非你有非常非常好的理由不用它. 当iOS应用构建的时候,Xcode会通过一种方式优化.png文件而不会优化其它文件格式.它优化得相当的好 他 ...

  8. Flink单机版安装与wordCount

    Flink为大数据处理工具,类似hadoop,spark.但它能够在大规模分布式系统中快速处理,与spark相似也是基于内存运算,并以低延迟性和高容错性主城,其核心特性是实时的处理流数据.从此大数据生 ...

  9. IOS设计模式之二(门面模式,装饰器模式)

    本文原文请见:http://www.raywenderlich.com/46988/ios-design-patterns. 由 @krq_tiger(http://weibo.com/xmuzyq) ...

  10. QFtp类参考

    QFtp是一个用来实现FTP协议的类. 详情请见…… #include <qftp.h> 继承了QNetworkProtocol. 所有成员函数的列表. 公有成员 QFtp () virt ...