4 Values whose Sum is 0
Time Limit: 15000MS   Memory Limit: 228000K
Total Submissions: 20334   Accepted: 6100
Case Time Limit: 5000MS

Description

The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .

Input

The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .

Output

For each input file, your program has to write the number quadruplets whose sum is zero.

Sample Input

6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45

Sample Output

5

Hint

Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).

思路

题意:给定四个长度为n的数组A, B, C, D。 从每个数组中取一个数, 这样得到四个数, 并且这四个数的之和为0. 求这样组合的个数。

题解:直接算出组合数的话,复杂度太高,分成两堆来求,算出 A[i] + B[i] 的值,然后在A[i] + B[i]中找 等于 -C[i] - D[i] 的个数

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 4005;
int cd[maxn*maxn];

int main()
{
	int N;
	while (~scanf("%d",&N))
	{
		int a[maxn],b[maxn],c[maxn],d[maxn];
		for (int i = 0;i < N;i++)	scanf("%d%d%d%d",&a[i],&b[i],&c[i],&d[i]);
		for (int i = 0;i < N;i++)	for (int j = 0;j < N;j++)	cd[i*N+j] = c[i] + d[j];
		sort(cd,cd + N*N);
		int res = 0;
		for (int i = 0;i < N;i++)
		{
			for (int j = 0;j < N;j++)
			{
				int tmp = -a[i] - b[j];
				int pos1 = lower_bound(cd,cd + N*N,tmp) - cd;
				int pos2 = upper_bound(cd,cd + N*N,tmp) - cd;
				res += pos2 - pos1;
			}
		}
		printf("%d\n",res);
	}
	return 0;
}

  

POJ 2785 4 Values whose Sum is 0(想法题)的更多相关文章

  1. POJ 2785 4 Values whose Sum is 0

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 13069   Accep ...

  2. POJ - 2785 4 Values whose Sum is 0 二分

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 25615   Accep ...

  3. POJ 2785 4 Values whose Sum is 0(折半枚举+二分)

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 25675   Accep ...

  4. POJ 2785 4 Values whose Sum is 0(暴力枚举的优化策略)

    题目链接: https://cn.vjudge.net/problem/POJ-2785 The SUM problem can be formulated as follows: given fou ...

  5. POJ 2785 4 Values whose Sum is 0(哈希表)

    [题目链接] http://poj.org/problem?id=2785 [题目大意] 给出四个数组,从每个数组中选出一个数,使得四个数相加为0,求方案数 [题解] 将a+b存入哈希表,反查-c-d ...

  6. POJ 2785 4 Values whose Sum is 0 Hash!

    http://poj.org/problem?id=2785 题目大意: 给你四个数组a,b,c,d求满足a+b+c+d=0的个数 其中a,b,c,d可能高达2^28 思路: 嗯,没错,和上次的 HD ...

  7. poj 2785 4 Values whose Sum is 0(折半枚举(双向搜索))

    Description The SUM problem can be formulated . In the following, we assume that all lists have the ...

  8. [POJ] 2785 4 Values whose Sum is 0(双向搜索)

    题目地址:http://poj.org/problem?id=2785 #include<cstdio> #include<iostream> #include<stri ...

  9. POJ 2785 4 Values whose Sum is 0 (二分)题解

    思路: 如果用朴素的方法算O(n^4)超时,这里用折半二分.把数组分成两块,分别计算前后两个的和,然后枚举第一个再二分查找第二个中是否有满足和为0的数. 注意和有重复 #include<iost ...

随机推荐

  1. C++基础——模拟事务 (2)Composite模式

    =================================版权声明================================= 版权声明:原创文章 禁止转载  请通过右侧公告中的“联系邮 ...

  2. css例子

    6.背景图像渐变的制作body{ background:#ccc url(xxx.gif)rpeat-x或y:} 7.给一个区块加上背景#branding{ width:700px: height:2 ...

  3. hexo —— 简单、快速、强大的Node.js静态博客框架

    hexo是一款基于Node.js的静态博客框架.目前在GitHub上已有1375 star 和 219 fork. 特性 风一般的速度 Hexo基于Node.js,支持多进程,几百篇文章也可以秒生成. ...

  4. Javascript手记-基本类型和引用类型

    1:ecmascript包含2中不同的数据类型,基本数值类型和引用数值类型.基本数据类型是简单的数据段,引用类型是指那些可能由多个值构成的对象. 1.1:常用的基本类型:Undefined,Null, ...

  5. 动态加载资源文件(ResourceDictionary)

    原文:动态加载资源文件(ResourceDictionary) 在xaml中控件通过绑定静态资源StaticResource来获取样式Style有多种方式: 1.在项目的启动文件App中<App ...

  6. hashMap遍历方式

    package Ch17; import java.util.HashMap; import java.util.Iterator; import java.util.Map; import java ...

  7. Unity UGUI实现鼠标拖动图片

    using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEngine.UI; ...

  8. js及vue监听键盘回车事件

    js document.onkeydown = (event) => { var e = event || window.event; if(e && e.keyCode==13 ...

  9. C++ 多继承与虚基类

    转载来自:CSDN insistGoGo  (http://blog.csdn.net/insistgogo) 多继承的定义:派生类的基类大于一个 语法: class  派生类名:继承方式1 基类名1 ...

  10. Spring启动异常: cvc-elt.1: Cannot find the declaration of element &#39;beans&#39;(转)

    Spring启动异常: cvc-elt.1: Cannot find the declaration of element 'beans' 2008-09-07 22:41 今天把在线聊天室代码改了下 ...