最近在阅读《Context Encoding for Semantic Segmentation》中看到应用了dilated convolutions。

扩张卷积与普通的卷积相比,除了卷积核的大小以外,还有一个扩张率(dilation rate)参数,主要用来表示扩张的大小。扩张卷积与普通卷积的相同点在于,卷积核的大小是一样的,在神经网络中即参数数量不变,区别在于扩张卷积具有更大的感受野。感受野是卷积核在图像上看到的大小,例如3×33×3卷积核的感受野大小为9。

(a) 普通卷积,1-dilated convolution,卷积核的感受野为3×3=93×3=9。 
(b) 扩张卷积,2-dilated convolution,卷积核的感受野为7×7=497×7=49。 
(c) 扩张卷积,4-dilated convolution,卷积核的感受野为15×15=22515×15=225。

扩展卷积在保持参数个数不变的情况下增大了卷积核的感受野,同时它可以保证输出的特征映射(feature map)的大小保持不变。一个扩张率为2的3×3卷积核,感受野与5×5的卷积核相同,但参数数量仅为9个,是5×5卷积参数数量的36%。

dilated的好处是不做pooling损失信息的情况下,加大了感受野,让每个卷积输出都包含较大范围的信息。在图像需要全局信息或者语音文本需要较长的sequence信息依赖的问题中,都能很好的应用dilated conv。

作者:谭旭
链接:https://www.zhihu.com/question/54149221/answer/192025860
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

deconv的其中一个用途是做upsampling,即增大图像尺寸。而dilated conv并不是做upsampling,而是增大感受野。

可以形象的做个解释:

对于标准的k*k卷积操作,stride为s,分三种情况:

(1) s>1,即卷积的同时做了downsampling,卷积后图像尺寸减小;

(2) s=1,普通的步长为1的卷积,比如在tensorflow中设置padding=SAME的话,卷积的图像输入和输出有相同的尺寸大小;

(3) 0<s<1,fractionally strided convolution,相当于对图像做upsampling。比如s=0.5时,意味着在图像每个像素之间padding一个空白的像素后,stride改为1做卷积,得到的feature map尺寸增大一倍。

而dilated conv不是在像素之间padding空白的像素,而是在已有的像素上,skip掉一些像素,或者输入不变,对conv的kernel参数中插一些0的weight,达到一次卷积看到的空间范围变大的目的。

当然将普通的卷积stride步长设为大于1,也会达到增加感受野的效果,但是stride大于1就会导致downsampling,图像尺寸变小。

dilated convolutions:扩张卷积的更多相关文章

  1. Dilated Convolutions 空洞卷积

    Dilated Convolutions,中文一般称为空洞卷积或者扩张卷积,是一种改进的图像卷积方法. 扩张卷积工作示意图如下: 图a是普通的卷积,感受野是3*3,相当于扩充dilation=0 图b ...

  2. [翻译] 扩张卷积 (Dilated Convolution)

    英文原文: Dilated Convolution 简单来说,扩张卷积只是运用卷积到一个指定间隔的输入.按照这个定义,给定我们的输入是一个2维图片,扩张率 k=1 是通常的卷积,k=2 的意思是每个输 ...

  3. CNN:扩张卷积输出分辨率计算

    扩张卷积(Dilated convolutions)是另一种卷积操作,也叫做空洞卷积(Atrous convolution).相比于普通的卷积,相同的卷积核,空洞卷积能够拥有更大的感受野. 相同的卷积 ...

  4. 论文阅读笔记二十一:MULTI-SCALE CONTEXT AGGREGATION BY DILATED CONVOLUTIONS(ICRL2016)

    论文源址:https://arxiv.org/abs/1511.07122 tensorflow Github:https://github.com/ndrplz/dilation-tensorflo ...

  5. NLP进阶之(七)膨胀卷积神经网络

    NLP进阶之(七)膨胀卷积神经网络1. Dilated Convolutions 膨胀卷积神经网络1.2 动态理解1.2.2 转置卷积动画1.2.3 理解2. Dilated Convolutions ...

  6. 空洞卷积(dilated Convolution) 与感受野(Receptive Field)

    一.空洞卷积 空洞卷积是是为了解决基于FCN思想的语义分割中,输出图像的size要求和输入图像的size一致而需要upsample,但由于FCN中使用pooling操作来增大感受野同时降低分辨率,导致 ...

  7. 【33】卷积步长讲解(Strided convolutions)

    卷积步长(Strided convolutions) 卷积中的步幅是另一个构建卷积神经网络的基本操作,让我向你展示一个例子. 如果你想用3×3的过滤器卷积这个7×7的图像,和之前不同的是,我们把步幅设 ...

  8. 场景分割:MIT Scene Parsing 与DilatedNet 扩展卷积网络

    MIT Scene Parsing Benchmark简介 Scene parsing is to segment and parse an image into different image re ...

  9. LSTM的备胎,用卷积处理时间序列——TCN与因果卷积(理论+Python实践)

    什么是TCN TCN全称Temporal Convolutional Network,时序卷积网络,是在2018年提出的一个卷积模型,但是可以用来处理时间序列. 卷积如何处理时间序列 时间序列预测,最 ...

随机推荐

  1. JS中级 - 03:文档宽高及窗口事件(选)

    可视区尺寸 document.documentElement.clientWidth document.documentElement.clientHeight 滚动距离 document.body. ...

  2. Spring进阶—如何用Java代码实现邮件发送(二)

    http://www.cnblogs.com/itsource/p/4266905.html

  3. iOS视频录制裁剪合成

    网址链接: 视频裁剪合并:http://blog.sina.com.cn/s/blog_64ea868501018jx3.html 视频之定义裁剪高宽度:http://www.cocoachina.c ...

  4. SQL Server 性能优化

    今天有位网友找我给他原有的系统数据库优化下查询速度,个人总结了几点对sqlserver的优化 1.Sql查询语句的优化,如:能使用外连接查询出来的尽量别用内连接...,这些个就不废话,如果我使用这个给 ...

  5. 一周总结:AutoEncoder、Inception 、模型搭建及下周计划

    一周总结:AutoEncoder.Inception .模型搭建及下周计划   1.AutoEncoder: AutoEncoder: 自动编码器就是一种尽可能复现输入信号的神经网络:自动编码器必须捕 ...

  6. 阅读ug949-vivado-design-methodology笔记

    阅读ug949-vivado-design-methodology笔记 xilinx更加推荐使用同步复位 怎样去设计时钟使能信号

  7. SSE图像算法优化系列六:OpenCv关于灰度积分图的SSE代码学习和改进。

    最近一直沉迷于SSE方面的优化,实在找不到想学习的参考资料了,就拿个笔记本放在腿上翻翻OpenCv的源代码,无意中看到了OpenCv中关于积分图的代码,仔细研习了一番,觉得OpenCv对SSE的灵活运 ...

  8. apache如何支持asp.net

    Apache是目前广泛使用的一种网络服务器程序,不仅在UNIX/LINUX平台上被大量使用,而且在Windows平台上也有许多站点放弃了IIS而转向Apache..NET是微软推出的功能强大的开发技术 ...

  9. AIMR 固定收益推荐读物

    目录 AIMR Suggested Fixed-Income Readings I. Perspectives on Interest Rates and Pricing of Traditional ...

  10. poj 2601 Simple calculations

    Simple calculations Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6559   Accepted: 32 ...