【本文链接】

http://www.cnblogs.com/hellogiser/p/find-k-missing-numbers-from-1-to-n.html

 【题目】

从1到n,共有n个数字(无序排列),每个数字只出现一次。现在随机拿走一个数字x,请给出最快的方法,找到这个数字。要求时间复杂度为O(n),空间复杂度为O(1)。如果随机拿走k(k>=2)个数字呢?

【分析】

题目给出的条件很强,数字是从1~n的数字,限制了数字的范围;每个数字只出现一次,限制了数字出现的次数;随即拿走了一个数字,说明只有一处是与其他不同、不符合规律的。我们可以利用这些特点来选择合适的解法。

(1)Hash法。利用Hash法统计数字出现的次数,次数为0的即为所求。时间复杂度O(n),空间复杂度O(n)。通常这不是面试、笔试时想要的答案,但是Hash的优势在于其通用性。

(2)排序法。利用快排,得到排序后的数组,然后顺序遍历,统计次数为0的数字。时间复杂度O(nlgn),空间复杂度O(1)。其时间复杂度略高,通常也不是面试官期待的解法,但排序法也算是一种通用做法。

(3)元素相乘/相加法。时间复杂度O(n),空间复杂度O(1)。

元素相乘法:由于只有一个元素被拿走,因此我们只需要先算出n的阶乘n!,再除以现存所有数字的乘积M,即可得到拿走的数字x (x=n!/M)。但是且缺陷是n不能太大,否则会溢出。

元素相加法:先算出从1到n的所有数字的和Sn,然后减去现有所有数字的和sum,即可得到拿走的数字x(x=Sn-sum)。元素相加法比元素相乘要更好一些。

(4)位运算。时间复杂度O(n),空间复杂度O(1)。

位运算法如果可以使用的话,应该是计算最快的方法。但是位运算对条件要求也较苛刻,一般需要元素有特殊规律,才有可能使用这种方法。在本题目中,对1~n所有元素进行xor运算得到A=1^2^3^…^(x-1)^x^(x+1)^…^n,在对取走一个元素后剩下的元素进行xor运算得到B=1^2^3^…^(x-1)^(x+1)^…^n,二者xor即可得拿走的数字x = A^B。因为在A^B的过程中相同的数字都被抵消掉了,剩余的结果即为x。

【代码】

 C++ Code 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
 
// 61_FindMissingNumberFrom1toN.cpp : Defines the entry point for the console application.
//
/*
    version: 1.0
    author: hellogiser
    blog: http://www.cnblogs.com/hellogiser
    date: 2014/5/28
*/

#include "stdafx.h"

/*
A=1^2^3^...^(x-1)^x^(x+1)^...^n
B=1^2^3^...^(x-1)^(x+1)^...^n
x = A^B

n=9
1,2,3,4,6,7,8,9
x = 5
*/
int FindMissingNumberFrom1ToN(int data[], int n)
{
    ;
    )
        ;
    // xor all
;
    ; i <= n; i++)
        xor_all ^= i;

// xor of current array
;
    ; i < length; i++)
        xor_current ^= data[i];

//get result
    int result = xor_all ^ xor_current;
    return result;
}

void test_base(int data[], int n)
{
    int result = FindMissingNumberFrom1ToN(data, n);
    printf("%d \n", result);
}

void test_case1()
{
    };
    int length = sizeof(data) / sizeof(int);
    test_base(data, length + );
}

void test_case2()
{
    };
    int length = sizeof(data) / sizeof(int);
    test_base(data, length + );
}

void test_case3()
{
    };
    int length = sizeof(data) / sizeof(int);
    test_base(data, length + );
}

void test_main()
{
    test_case1();
    test_case2();
    test_case3();
}

int _tmain(int argc, _TCHAR *argv[])
{
    test_main();
    ;
}
/*
4
1
5
*/

【扩展】

如果随机拿走两个数字呢?如果随机拿走k(k>2)个数字呢?

(1)(2)是通用做法,仍适合。

(3)扩展:

K=1时,构造2个等式。

Sa = 1+2+…(x-1)+x+(x+1)…+n

Sb = 1+2+…(x-1)+(x+1)…+n

X = Sa-Sb

K=2时,构造4个等式。

S2a = 12+22+…+x2+…+y2+…+n

S2b = 12+22+…(x-1)2+(x+1)2…+(y-1)2+(y+1)2…+n

S1a = 1+2+…+x+…+y+…+n

S1b = 1+2+…(x-1)+(x+1)…+(y-1)+(y+1)…+n

则有x2+y2=S2a-S2b,x+y =S1a-S1b。可以求解得到x和y。

同理(k>2),构造2*k个等式,可以得到关于k个数的k个方程,求解即可得到k个数字。

(4)扩展:

思考一下,如何扩展?

【参考】

http://ouscn.diandian.com/post/2013-10-06/40052170552

【本文链接】

http://www.cnblogs.com/hellogiser/p/find-k-missing-numbers-from-1-to-n.html

61. 从1到n,共有n个数字,每个数字只出现一次。从中随机拿走一个数字x,请给出最快的方法,找到这个数字。如果随机拿走k(k>=2)个数字呢?[find k missing numbers from 1 to n]的更多相关文章

  1. 给定两个字符串 s 和 t,它们只包含小写字母。 字符串 t 由字符串 s 随机重排,然后在随机位置添加一个字母。 请找出在 t 中被添加的字母。

    给定两个字符串 s 和 t,它们只包含小写字母.字符串 t 由字符串 s 随机重排,然后在随机位置添加一个字母.请找出在 t 中被添加的字母. 示例: 输入: s = "abcd" ...

  2. 谷歌笔试题--给定一个集合A=[0,1,3,8](该集合中的元素都是在0,9之间的数字,但未必全部包含), 指定任意一个正整数K,请用A中的元素组成一个大于K的最小正整数。

    谷歌笔试题--给定一个集合A=[0,1,3,8](该集合中的元素都是在0,9之间的数字,但未必全部包含), 指定任意一个正整数K,请用A中的元素组成一个大于K的最小正整数. Google2009华南地 ...

  3. 代码题(3)— 最小的k个数、数组中的第K个最大元素、前K个高频元素

    1.题目:输入n个整数,找出其中最小的K个数. 例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4. 快排思路(掌握): class Solution { public ...

  4. 算法导论学习之线性时间求第k小元素+堆思想求前k大元素

    对于曾经,假设要我求第k小元素.或者是求前k大元素,我可能会将元素先排序,然后就直接求出来了,可是如今有了更好的思路. 一.线性时间内求第k小元素 这个算法又是一个基于分治思想的算法. 其详细的分治思 ...

  5. [LeetCode] All Nodes Distance K in Binary Tree 二叉树距离为K的所有结点

    We are given a binary tree (with root node root), a target node, and an integer value K. Return a li ...

  6. [Swift]LeetCode698. 划分为k个相等的子集 | Partition to K Equal Sum Subsets

    Given an array of integers nums and a positive integer k, find whether it's possible to divide this ...

  7. LeetCode竞赛题:K 次取反后最大化的数组和(给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。)

    给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次.(我们可以多次选择同一个索引 i.) 以这种方式修改数组后 ...

  8. hdu6003 Problem Buyer 贪心 给定n个区间,以及m个数,求从n个区间中任意选k个区间,满足m个数都能在k个区间中找到一个包含它的区间,如果一个区间包含了x,那么 该区间不能再去包含另一个数,即k&gt;=m。求最小的k。如果不存在这样的k,输出“IMPOSSIBLE!”。

    /** 题目:hdu6003 Problem Buyer 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6003 题意:给定n个区间,以及m个数,求从n个区 ...

  9. 页面上有3个输入框:分别为max,min,num;三个按钮:分别为生成,排序,去重;在输入框输入三个数字后,先点击生成按钮,生成一个数组长度为num,值为max到min之间的随机整数点击排序,对当前数组进行排序,点击去重,对当前数组进行去重。 每次点击之后使结果显示在控制台

    <!DOCTYPE html> <html> <head> <!-- 页面上有3个输入框:分别为max,min,num:三个按钮:分别为生成,排序,去重: 在 ...

随机推荐

  1. 如何在 Evernote 中支持代码高亮

    Evernote 本身不支持代码高亮,在 Apple App-Store 上有一个建立在 Evernote 上的 EverCode,可以支持代码高亮,需要付费.虽然只有¥5,但是这个 App 似乎只能 ...

  2. Codeforces 731C:Socks(并查集)

    http://codeforces.com/problemset/problem/731/C 题意:有n只袜子,m天,k个颜色,每个袜子有一个颜色,再给出m天,每天有两只袜子,每只袜子可能不同颜色,问 ...

  3. 在Windows 2008/2008 R2 上配置IIS 7.0/7.5 故障转移集群

    本文主要是从:http://support.microsoft.com/kb/970759/zh-cn,直接转载,稍作修改裁剪而来,其中红色粗体部分,是我特别要说明的 若要配置 IIS 7.0 和 7 ...

  4. pyinstaller--将py文件转化成exe

    首先要注意一下:打包python文件成exe格式这个过程只能在windows环境下运行 1. 直接在命令行用pip安装 pyinstaller pip install pyinstaller</ ...

  5. Sql例子Sp_ExecuteSql 带参数

    Declare @i int, @projectCount int ) --参数 ) ) ) ) ) ) --循环变量起始 --得到所有的项目 select @projectCount = count ...

  6. 2014:超越炒作,进入部署SDN的时代

    2013 年,我们看到了非常多新的SDN 产品.体系结构.营销活动和各种会议,一些新的标准和开源组织也进入了这个领域.当时的SDN 刚刚从炒作周期的高点回归下来.转眼到了2014 年,这一年我们会看到 ...

  7. Hibernate使用注解进行ORM映射实例

    在上一篇博客中,我们通过xml配置文件进行实体类和表的映射,但是近两年来有更多的项目对一些比较稳定的实体类使用了注解进行ORM映射,这样使得编程更加简洁.简单.其实使用注解进行ORM映射和使用xml进 ...

  8. BZOJ_3555_[Ctsc2014]企鹅QQ_哈希

    BZOJ_3555_[Ctsc2014]企鹅QQ_哈希 Description PenguinQQ是中国最大.最具影响力的SNS(Social Networking Services)网站,以实名制为 ...

  9. Vue 进阶之路(三)

    之前的文章我们已经对 vue 有了初步认识,这篇文章我们通过一个例子说一下 vue 的方法 methods,计算属性 computed 和监听器 watch. 现在我们有一个需求,变量 firstNa ...

  10. WKWebView使用方法

    基本使用方法 WKWebView有两个delegate,WKUIDelegate 和 WKNavigationDelegate.WKNavigationDelegate主要处理一些跳转.加载处理操作, ...