描述


http://www.lydsy.com/JudgeOnline/problem.php?id=1609

给出一串由1,2,3组成的数,求最少需要改动多少个数,使其成为不降或不升序列.

分析


法1:改动一些数字后变为不升(不降)序列,那么除了需要改动的数字以外,其他的数字本身满足不升(不降),所以求最长不升(不降)子序列即可.O(nlogn)

法2:考虑搜索的思路,枚举当前位置的值,如果和原来的值相等,那么不许改动,否则改动数+1,然后搜索下一个位置,值要大于等于当前位置的改动数.这样会有重叠子问题,所以可以记忆化,倒过来就是dp.

dp[i][j]表示前i个,结尾为j的改动数,则有:

如果a[i]==j,则dp[i][j]=dp[i-1][k](k<=j)

如果a[i]!=j,则dp[i][j]=dp[i-1][k]+1(k<=j) O(n).

LIS:

O(n^2)的算法:

 #include <bits/stdc++.h>
using namespace std; const int maxn=+;
int n,ans;
int a[maxn],dp[maxn]; int main(){
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i=;i<=n;i++){
dp[i]=;
for(int j=;j<i;j++)
if(a[j]<=a[i]) dp[i]=max(dp[j]+,dp[i]);
ans=max(ans,dp[i]);
}
for(int i=;i<=n;i++){
dp[i]=;
for(int j=;j<i;j++)
if(a[j]>=a[i]) dp[i]=max(dp[j]+,dp[i]);
ans=max(ans,dp[i]);
}
printf("%d\n",n-ans);
return ;
}

O(nlogn)的算法:

 #include <bits/stdc++.h>
using namespace std; const int maxn=+,INF=0x7fffffff;
int n,ans;
int a[maxn],b[maxn],dp[maxn]; int main(){
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]), b[n+-i]=a[i];
fill(dp+,dp+n+,INF);
for(int i=;i<=n;i++)
*upper_bound(dp+,dp+n+,a[i])=a[i];
ans=lower_bound(dp+,dp+n+,INF)-(dp+);
fill(dp+,dp+n+,INF);
for(int i=;i<=n;i++)
*upper_bound(dp+,dp+n+,b[i])=b[i];
ans=max(ans,lower_bound(dp+,dp+n+,INF)-(dp+));
printf("%d\n",n-ans);
return ;
}

快得不是一点点...

O(n)的算法:

 #include <bits/stdc++.h>
using namespace std; const int maxn=+,INF=0x3fffffff;
int n,ans;
int a[maxn];
int dp[maxn][];
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
ans=INF;
for(int i=;i<=n;i++)for(int j=;j<=;j++) dp[i][j]=INF;
for(int i=;i<=n;i++)for(int j=;j<=;j++)for(int k=;k<=j;k++)
if(a[i]==j) dp[i][j]=min(dp[i][j],dp[i-][k]);
else dp[i][j]=min(dp[i][j],dp[i-][k]+);
for(int i=;i<=;i++) ans=min(ans,dp[n][i]);
for(int i=;i<=n;i++)for(int j=;j<=;j++) dp[i][j]=INF;
for(int i=n;i>=;i--)for(int j=;j<=;j++)for(int k=;k<=j;k++)
if(a[i]==j) dp[i][j]=min(dp[i][j],dp[i+][k]);
else dp[i][j]=min(dp[i][j],dp[i+][k]+);
for(int i=;i<=;i++) ans=min(ans,dp[][i]);
printf("%d\n",ans);
}

这里用到了STL里的二分查找.对于严格上升子序列,找到dp数组中a[i]的下界(满足dp[k]>=a[i]的最小的k(上界也可以,因为没有重复所以不会取等))即可,这样的话如果和以前的相同就覆盖了.对于这个问题,求的是不降子序列,所以相同的不能覆盖,所以我们找到dp数组中a[i]的上界(满足dp[k]>a[i]的最小的k),这样如果和以前相同的话就继续往后排,把原来上升序列中更大的结尾更新小.

对于求严格下降子序列,就需要找满足dp[k]<=a[i]的最小的k,不严格的就是dp[k]<a[i]的最小的k.

1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 1326  Solved: 801
[Submit][Status][Discuss]

Description


了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐。每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定
为第1批就餐的奶牛占据,中间的位置就归第2批就餐的奶牛了。由于奶牛们不理解FJ的安排,晚饭前的排队成了一个大麻烦。
第i头奶牛有一张标明她用餐批次D_i(1 <= D_i <= 3)的卡片。虽然所有N(1 <= N <=
30,000)头奶牛排成了很整齐的队伍但谁都看得出来,卡片上的号码是完全杂乱无章的。
在若干次混乱的重新排队后,FJ找到了一种简单些的方法:奶牛们不动,他沿着队伍从头到尾走一遍把那些他认为排错队的奶牛卡片上的编号改掉,最终得到一个
他想要的每个组中的奶牛都站在一起的队列,例如111222333或者333222111。哦,你也发现了,FJ不反对一条前后颠倒的队列,那样他可以让
所有奶牛向后转,然后按正常顺序进入餐厅。
你也晓得,FJ是个很懒的人。他想知道,如果他想达到目的,那么他最少得改多少头奶牛卡片上的编号。所有奶牛在FJ改卡片编号的时候,都不会挪位置。

Input

第1行: 1个整数:N 第2..N+1行: 第i+1行是1个整数,为第i头奶牛的用餐批次D_i

Output

第1行: 输出1个整数,为FJ最少要改几头奶牛卡片上的编号,才能让编号变成他设想中的样子

Sample Input

5
1
3
2
1
1
输入说明:

队列中共有5头奶牛,第1头以及最后2头奶牛被设定为第一批用餐,第2头奶牛的预设是第三批用餐,第3头则为第二批用餐。

Sample Output

1

输出说明:

如果FJ想把当前队列改成一个不下降序列,他至少要改2头奶牛的编号,一种可行的方案是:把队伍中2头编号不是1的奶牛的编号都改成1。不过,如果FJ选择把第1头奶牛的编号改成3就能把奶牛们的队伍改造成一个合法的不上升序列了。

HINT

Source

BZOJ_1609_[Usaco2008_Feb]_Eating_Together_麻烦的聚餐_(动态规划,LIS)的更多相关文章

  1. Bzoj 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 二分

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1272  Solve ...

  2. BZOJ1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 938  Solved ...

  3. BZOJ 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐( LIS )

    求LIS , 然后用 n 减去即为answer ---------------------------------------------------------------------------- ...

  4. BZOJ 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按F ...

  5. 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MB Submit: 1010  Solv ...

  6. BZOJ_1672_[Usaco2005 Dec]Cleaning Shifts 清理牛棚_动态规划+线段树

    BZOJ_1672_[Usaco2005 Dec]Cleaning Shifts 清理牛棚_动态规划+线段树 题意:  约翰的奶牛们从小娇生惯养,她们无法容忍牛棚里的任何脏东西.约翰发现,如果要使这群 ...

  7. 51nod_1412_AVL树的种类_动态规划

    51nod_1412_AVL树的种类_动态规划 题意: 平衡二叉树(AVL树),是指左右子树高度差至多为1的二叉树,并且该树的左右两个子树也均为AVL树. 现在问题来了,给定AVL树的节点个数n,求有 ...

  8. BZOJ【1609】 麻烦的聚餐

    609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1198  Solved ...

  9. 非 动态规划---LIS

    题目:一个序列有N个数:A[1],A[2],…,A[N],求出最长非降子序列的长度.(见动态规划---LIS) /* 题目:一个序列有N个数:A[1],A[2],…,A[N],求出最长非降子序列的长度 ...

随机推荐

  1. APP开发 Token生成 验证

    准备好协议(HTTP).数据表示方法(JSON).请求数据的方法(REST) 选择一个合适的框架 接口特点汇总: 1.因为是非开放性的,所以所有的接口都是封闭的,只对公司内部的产品有效: 2.因为是非 ...

  2. SharePoint 2013技巧分享系列 - 隐藏Blog和Apps左侧导航菜单

    企业内部网中,不需要员工创建Blog或者创建,安装SharePoint应用,因此需要在员工个人Web页面需要隐藏Blog或者Apps导航菜单, 其步骤设置如下: 该技巧适合SharePoint 201 ...

  3. HttpClient示例

    <%@page import="com.sun.xml.ws.client.BindingProviderProperties"%> <%@page conten ...

  4. [NSURLConnection]分别用Post和Get方式获取网络数据并把数据显示到表格

    @interface ViewController ()<UITableViewDataSource,UITableViewDelegate> { UIButton* getButton; ...

  5. OC4_单例

    // // MusicManager.h // OC4_单例 // // Created by zhangxueming on 15/6/19. // Copyright (c) 2015年 zhan ...

  6. EE就业最好的方向是转CS,其次是VLSI/ASIC DESIGN &amp; VERIFICATION

    Warald在2012年写过一篇文章<EE现在最好就业的方向是VLSI/ASIC DESIGN VERIFICATION>,三年过去了,很多学电子工程的同学想知道现在形势如何. 首先,按照 ...

  7. python中pass语句的作用是什么

    pass语句不会执行任何操作,一般作为占位符或者创建站位程序,whileFalse:pass.

  8. copy and paste ,做到这样也很牛逼了

    db笔记本 mysql资源 mysql5.1中文参考手册 mysql管理 基于linux使用mysql二进制包安装mysql5.5 mysql client命令行选项 mysqld服务器系统变量和状态 ...

  9. php中注释有关内容

    //单行注释 /*多行注释*/ /** 文档注释 (注意 文档注释与前面的那个多行注释不同)文档注释可以和特定的程序元素相关联 例如 类 函数 常量 变量方法 问了将文档注释与元素相关联 只需要在元素 ...

  10. 使用WinSCP这个软件使linux和win7互传文件

    使用这个软件之前首先win7要可以ping通linux系统,且linux要开启,关机可不能通啊!!!!!!!!! 双击这个快捷方式 主机名写ip地址 我们可以将虚拟机上的文件下载下来进行使用 也可以将 ...