【数论】卢卡斯定理模板 洛谷P3807

>>>>题目

【题目】

https://www.luogu.org/problemnew/show/P3807

【输入格式】

第一行一个整数T(T\le 10T≤10),表示数据组数

第二行开始共T行,每行三个数n m p,意义如上

【输出格式】

共T行,每行一个整数表示答案。

【输入样例】

2
1 2 5
2 1 5

【输出样例】

3
3

>>>>分析

emmmm模板题还是不用分析了吧

卢卡斯定理解决的就是组合数C(n,m)中m,n太大的情况

根据定理的内容,C(n,m)=C(n/p,m/p)*C(n%p,m%p)其中p是模数

我们只需要不断递归求解C(n/p,m/p)就可以啦

因为同余方程不满足两边同时除一个数,那么只能将除一个数转化成乘这个数在模数p意义下的逆元

求逆元的方式有很多种,在我的另一个博客里面会有详细介绍φ(>ω<*)

#include<bits/stdc++.h>
#define ll long long
#define L I64d
#define maxn 100005
using namespace std;
ll fac[*maxn];
int p,T;
void init(int n,int m)//预处理阶乘
{
fac[]=;
for(int i=;i<=n+m;i++) fac[i]=fac[i-]*i%p;
}
ll quickpow(ll x,ll y)
{
ll ans=;
while(y)
{
if(y&) ans=ans*x%p;
x=x*x%p;
y=y>>;
}
return ans%p;
}
ll C(ll m,ll n)
{
if(m>n) return ;
return fac[n]*quickpow(fac[m],p-)%p*quickpow(fac[n-m],p-);//费马小定理求逆元
}
ll lucas(ll m,ll n)
{
if(!m) return ;
return lucas(m/p,n/p)*C(m%p,n%p)%p;
}
int main()
{
scanf("%d",&T);
while(T--)
{
int n,m;
scanf("%d%d%d",&n,&m,&p);
init();
printf("%Ld\n",lucas(m,n+m));
}
return ;
}
/*
2
1 2 5
2 1 5
*/

完结撒花✿✿ヽ(°▽°)ノ✿

【数论】卢卡斯定理模板 洛谷P3807的更多相关文章

  1. KMP字符串匹配 模板 洛谷 P3375

    KMP字符串匹配 模板 洛谷 P3375 题意 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.(如果 ...

  2. 洛谷——P3807 【模板】卢卡斯定理

    P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ ...

  3. 洛谷 P3807 【模板】卢卡斯定理

    P3807 [模板]卢卡斯定理 题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105) 求 C_{n+m}^{m}\ mod\ pCn+mm ...

  4. 【刷题】洛谷 P3807 【模板】卢卡斯定理

    题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) ...

  5. 【洛谷P3807】(模板)卢卡斯定理

    卢卡斯定理 把n写成p进制a[n]a[n-1][n-2]…a[0],把m写成p进制b[n]b[n-1][n-2]…b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])* ...

  6. 【模板】LIS模板 洛谷P1091 [NOIP2004提高组]合唱队形 [2017年4月计划 动态规划11]

    以题写模板. 写了两个:n^2版本与nlogn版本 P1091 合唱队形 题目描述 N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K位同学排成合唱队形. 合唱队形是指这样的一种队 ...

  7. 树链剖分模板(洛谷P3384)

    洛谷P3384 #include <bits/stdc++.h> #define DBG(x) cerr << #x << " = " < ...

  8. [洛谷P3807]【模板】卢卡斯定理

    题目大意:给你$n,m,p(p \in \rm prime)$,求出$C_{n + m}^m\bmod p(可能p\leqslant n,m)$ 题解:卢卡斯$Lucas$定理,$C_B^A\bmod ...

  9. 洛谷P3807 【模板】卢卡斯定理exgcd

    题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105 ) 求 C_{n+m}^{m}\ mod\ pCn+mm​ mod p 保证P为pri ...

随机推荐

  1. [LeetCode] Super Pow 超级次方

    Your task is to calculate ab mod 1337 where a is a positive integer and b is an extremely large posi ...

  2. 软件测试基础homework2

    1.for循环里的i>0应该改为i>=0 test1:x=[3,2,5];y=2 test2:x=[3];y=2 test3:x=[2,3,5];y=4 2.for循环里的i应该倒序 te ...

  3. 【VLC-Android】Mac下编译vlc-android

    前言 突然想整整VLC-Android,然后就下一个玩玩看,这里记录点遇到的问题. 声明 欢迎转载,但请保留文章原始出处:)  博客园:http://www.cnblogs.com 农民伯伯: htt ...

  4. 用DOS批处理实现FTP自动上传、下载、清理文件

    用DOS批处理实现FTP自动上传.下载.清理文件 最近好像特别的忙,好久没来写点东西了,今天写了一个利用批处理程序完成FTP自动上传.下载.清理文件的程序.赶紧 记录下来,以备日后之用.功能介绍:自动 ...

  5. css3实现无缝滚动效果

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  6. C# Windows Sockets (Winsock) 接口 (转)

    在.Net中,System.Net.Sockets 命名空间为需要严密控制网络访问的开发人员提供了 Windows Sockets (Winsock) 接口的托管实现.System.Net 命名空间中 ...

  7. python学习:设计一个算法将缺失的数字找出来。

    算法题   已知整型数值 a[99], 包含的所有99个元素都是从1-100中随机取值,并且这99个数两两互不相等,也就是说从1到100这100个数字有99个在数值内,有一个缺失.请设计一个算法将缺失 ...

  8. Spring对象生存周期(Scope)的分析

    一.Scope定义 Scope用来声明容器中管理的对象所应该处的限定场景或者说对象的存活时间,即容器在对象进入相应的Scope之前,生产并装配这些对象,在该对象不再处于这些Scope之后,容器通常会销 ...

  9. 定义对象为什不可以写到while语句外面。VS2017

    /// <summary> /// 绑定产品信息到网络列表 /// </summary> private void BindProduct() { Pros = new Lis ...

  10. &quot;重力锁屏&quot;Beta版使用说明

    一.产品介绍 重力锁屏是基于android系统的一款锁屏软件.它利用重力感应器来判断用户的动作从而自动锁屏亮屏,是锁屏软件的一大创新.相比传统的锁屏软件,“重力锁屏”从可操作性.方便性.功能全面性都有 ...