Time Limit: 1000MS Memory Limit: 65536K

Special Judge

Description

The City has a number of municipal buildings and a number of fallout shelters that were build specially to hide municipal workers in case of a nuclear war. Each fallout shelter has a limited capacity in terms of a number of people it can accommodate, and there’s almost no excess capacity in The City’s fallout shelters. Ideally, all workers from a given municipal building shall run to the nearest fallout shelter. However, this will lead to overcrowding of some fallout shelters, while others will be half-empty at the same time.

To address this problem, The City Council has developed a special evacuation plan. Instead of assigning every worker to a fallout shelter individually (which will be a huge amount of information to keep), they allocated fallout shelters to municipal buildings, listing the number of workers from every building that shall use a given fallout shelter, and left the task of individual assignments to the buildings’ management. The plan takes into account a number of workers in every building - all of them are assigned to fallout shelters, and a limited capacity of each fallout shelter - every fallout shelter is assigned to no more workers then it can accommodate, though some fallout shelters may be not used completely.

The City Council claims that their evacuation plan is optimal, in the sense that it minimizes the total time to reach fallout shelters for all workers in The City, which is the sum for all workers of the time to go from the worker’s municipal building to the fallout shelter assigned to this worker.

The City Mayor, well known for his constant confrontation with The City Council, does not buy their claim and hires you as an independent consultant to verify the evacuation plan. Your task is to either ensure that the evacuation plan is indeed optimal, or to prove otherwise by presenting another evacuation plan with the smaller total time to reach fallout shelters, thus clearly exposing The City Council’s incompetence.

During initial requirements gathering phase of your project, you have found that The City is represented by a rectangular grid. The location of municipal buildings and fallout shelters is specified by two integer numbers and the time to go between municipal building at the location (Xi, Yi) and the fallout shelter at the location (Pj, Qj) is Di,j = |Xi - Pj| + |Yi - Qj| + 1 minutes.

Input

The input consists of The City description and the evacuation plan description. The first line of the input file consists of two numbers N and M separated by a space. N (1 ≤ N ≤ 100) is a number of municipal buildings in The City (all municipal buildings are numbered from 1 to N). M (1 ≤ M ≤ 100) is a number of fallout shelters in The City (all fallout shelters are numbered from 1 to M).

The following N lines describe municipal buildings. Each line contains there integer numbers Xi, Yi, and Bi separated by spaces, where Xi, Yi (-1000 ≤ Xi, Yi ≤ 1000) are the coordinates of the building, and Bi (1 ≤ Bi ≤ 1000) is the number of workers in this building.

The description of municipal buildings is followed by M lines that describe fallout shelters. Each line contains three integer numbers Pj, Qj, and Cj separated by spaces, where Pi, Qi (-1000 ≤ Pj, Qj ≤ 1000) are the coordinates of the fallout shelter, and Cj (1 ≤ Cj ≤ 1000) is the capacity of this shelter.

The description of The City Council’s evacuation plan follows on the next N lines. Each line represents an evacuation plan for a single building (in the order they are given in The City description). The evacuation plan of ith municipal building consists of M integer numbers Ei,j separated by spaces. Ei,j (0 ≤ Ei,j ≤ 1000) is a number of workers that shall evacuate from the ith municipal building to the jth fallout shelter.

The plan in the input file is guaranteed to be valid. Namely, it calls for an evacuation of the exact number of workers that are actually working in any given municipal building according to The City description and does not exceed the capacity of any given fallout shelter.

Output

If The City Council’s plan is optimal, then write to the output the single word OPTIMAL. Otherwise, write the word SUBOPTIMAL on the first line, followed by N lines that describe your plan in the same format as in the input file. Your plan need not be optimal itself, but must be valid and better than The City Council’s one.

Sample Input

3 4

-3 3 5

-2 -2 6

2 2 5

-1 1 3

1 1 4

-2 -2 7

0 -1 3

3 1 1 0

0 0 6 0

0 3 0 2

Sample Output

SUBOPTIMAL

3 0 1 1

0 0 6 0

0 4 0 1

Source

Northeastern Europe 2002

题意:有n个市政大楼和m个避难所,每一个市政大楼都有一定的人数,而每一个避难所也有一定的容量,从某个市政大楼到某个避难所的花费是曼哈顿距离+1,现在委员会给你一个有效的疏散计划,判断还有没有这个计划更优的方案。

分析:开始理解题意的时候,以为用最小费用跑一次,判断最小费用与所给的答案,但是TLE,后来在讨论中看到最小费用会超时,说是用消圈的方式判断是不是还有更优解。

消圈定理:残留网络里如果存在负费用圈,那么当前流不是最小费用流。

负圈有必要解释一下:费用总和是负数,且每条边的剩余流量大于0

按照所给的信息建图。

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <queue>
#include <algorithm>

using namespace std;

const int INF = 0x3f3f3f3f;

const int Max = 210;

typedef struct node
{
    int x,y,num;
}Point;

int Map[Max][Max],Cost[Max][Max],Num[Max];

Point  Z[Max],B[Max];

int dis[Max],pre[Max],Du[Max];

bool vis[Max];

int n,m,s,t;

int ok(Point a,Point b)
{
    return abs(a.x-b.x)+abs(a.y-b.y)+1;
}

int SPFA() //判断是不是有负圈
{
    for(int i=0;i<=t;i++)
    {
        dis[i] = INF;

        pre[i] = -1;

        Du[i] = 0;

        vis[i]=false;
    }
    queue<int>Q;

    dis[t] = 0,vis[t] = true;

    Q.push(t);

    Du[t] = 1;

    while(!Q.empty())
    {
        int u = Q.front();

        Q.pop();

        for(int i=0;i<=t;i++)
        {
            if(Map[u][i]&&dis[i]>dis[u]+Cost[u][i])
            {
                dis[i] = dis[u]+Cost[u][i];

                pre[i] = u;

                if(!vis[i])
                {
                    vis[i]=true;

                    Q.push(i);

                    Du[i]++;

                    if(Du[i]>t)
                    {
                        return i;
                    }
                }
            }
        }

        vis[u]=false;
    }

    return -1;
}

int main()
{

    int num;

    while(~scanf("%d %d",&n,&m))
    {
        s= 0, t =n+m+1;

        memset(Map,0,sizeof(Map));

        memset(Cost,0,sizeof(Cost));

        memset(Num,0,sizeof(Num));

        for(int i=1;i<=n;i++) scanf("%d %d %d",&Z[i].x,&Z[i].y,&Z[i].num);

        for(int i=1;i<=m;i++) scanf("%d %d %d",&B[i].x,&B[i].y,&B[i].num);

        for(int i=1;i<=n;i++)//市政与避难所之间建图
        {
            for(int j=1;j<=m;j++)
            {
                Cost[i][j+n] = ok(Z[i],B[j]);

                Cost[j+n][i] = -Cost[i][j+n];

                Map[i][j+n] = Z[i].num;
            }
        }
        int ans = 0;

        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                scanf("%d",&num);

                Map[i][j+n]-= num;

                Map[j+n][i] = num;

                Num[j]+=num;
            }
        }

        for(int i=1;i<=m;i++)
        {
            Map[i+n][t] = B[i].num-Num[i];

            Map[t][i+n] = Num[i];
        }

        ans = SPFA();

        if(ans==-1)
        {
            printf("OPTIMAL\n");
        }
        else
        {
            printf("SUBOPTIMAL\n");

            memset(vis,false,sizeof(vis));

            int v = ans;

            while(!vis[v])
            {
                vis[v]=true;

                v = pre[v];
            }

            ans  = v;

            do
            {
                Map[pre[v]][v] --;

                Map[v][pre[v]]++;

                v = pre[v];
            }
            while(v!=ans);

            for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=m;j++)
                {
                    if(j!=1)
                    {
                        printf(" ");
                    }

                    printf("%d",Map[j+n][i]);
                }

                printf("\n");
            }
        }
    }
    return 0;
}

Evacuation Plan-POJ2175最小费用消圈算法的更多相关文章

  1. poj 2175 Evacuation Plan 最小费用流判定,消圈算法

    题目链接 题意:一个城市有n座行政楼和m座避难所,现发生核战,要求将避难所中的人员全部安置到避难所中,每个人转移的费用为两座楼之间的曼哈顿距离+1,题目给了一种方案,问是否为最优方案,即是否全部的人员 ...

  2. POJ 2157 Evacuation Plan [最小费用最大流][消圈算法]

    ---恢复内容开始--- 题意略. 这题在poj直接求最小费用会超时,但是题意也没说要求最优解. 根据线圈定理,如果一个跑完最费用流的残余网络中存在负权环,那么顺着这个负权环跑流量为1那么会得到更小的 ...

  3. POJ2175 Evacuation Plan

    Evacuation Plan Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4617   Accepted: 1218   ...

  4. nyoj 712 探 寻 宝 藏--最小费用最大流

    问题 D: 探 寻 宝 藏 时间限制: 1 Sec  内存限制: 128 MB 题目描述 传说HMH大沙漠中有一个M*N迷宫,里面藏有许多宝物.某天,Dr.Kong找到了迷宫的地图,他发现迷宫内处处有 ...

  5. poj 2195 二分图带权匹配+最小费用最大流

    题意:有一个矩阵,某些格有人,某些格有房子,每个人可以上下左右移动,问给每个人进一个房子,所有人需要走的距离之和最小是多少. 貌似以前见过很多这样类似的题,都不会,现在知道是用KM算法做了 KM算法目 ...

  6. hdu 2686 Matrix 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2686 Yifenfei very like play a number game in the n*n ...

  7. hdu 1533 Going Home 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1533 On a grid map there are n little men and n house ...

  8. 【进阶——最小费用最大流】hdu 1533 Going Home (费用流)Pacific Northwest 2004

    题意: 给一个n*m的矩阵,其中由k个人和k个房子,给每个人匹配一个不同的房子,要求所有人走过的曼哈顿距离之和最短. 输入: 多组输入数据. 每组输入数据第一行是两个整型n, m,表示矩阵的长和宽. ...

  9. SGU 185.Two shortest (最小费用最大流)

    时间限制:0.25s 空间限制:4M 题意: 在n(n<=400)个点的图中,找到并输出两条不想交的最短路.不存在输出“No sulotion”: Solution: 最小费用最大流 建图与po ...

随机推荐

  1. Java 性能优化之 String 篇

    原文:http://www.ibm.com/developerworks/cn/java/j-lo-optmizestring/ Java 性能优化之 String 篇 String 方法用于文本分析 ...

  2. python3爬取网页

    爬虫 python3爬取网页资源方式(1.最简单: import'http://www.baidu.com/'print2.通过request import'http://www.baidu.com' ...

  3. 烂泥:学习ubuntu远程桌面(一):配置远程桌面

    本文由秀依林枫提供友情赞助,首发于烂泥行天下 公司服务器目前安装的都是ubuntu 14.04系统,而且由于业务需要,需要使用到ubuntu的远程桌面功能.所以本篇文章都是围绕ubuntu的远程桌面来 ...

  4. C#插件构架实战 + Visual C#插件构架实战补遗(转)

    C#插件构架实战 C# 插件构架实战 Jack H Hansen [ 2004-07-27 ] Keywords C# 插件 反射(System.Reflection) 属性(System.Attri ...

  5. LintCode First Position of Target

    找指定target的最左位置. class Solution { /** * @param nums: The integer array. * @param target: Target to fi ...

  6. 回顾一年的IT学习历程与大学生活

    今天是2015年8月27日,距离成为大三狗还有一个多星期,在这个不算繁忙的暑假的下午来总结一下这一年来,在IT方面的学习. 一.入门(2014.3) 我大一的专业是信息工程,信息工程听上去就是信息(I ...

  7. jQuery 写的幻灯左右切换插件

    <html> <head> <meta charset="utf-8"> <title>官网</title> <s ...

  8. 提取安卓手机的recovery

    一直都是从网上下载的recovery文件安装到手机.至于这个小小的recovery到底是什么全然不知.能不能自己做一个recovery呢?因为功能比较多的clockworkmod(简称cmw)的官网上 ...

  9. Codeforces Round #373 (Div. 2) A

    Description Every summer Vitya comes to visit his grandmother in the countryside. This summer, he go ...

  10. 初探内联方式的 onload=&quot;doSomething()&quot;为何要加&quot;()&quot;?而js代码的 onload=&quot;doSomething&quot; 和 addEventListener 为何不加&quot;()&quot;?

    问题引入:在看<Jquery基础教程>第四版的时,P34页有这样一段话 引用函数与调用函数 这里在将函数指定为处理程序时,省略了后面的圆括号,只使用了函数名.如果带着圆括号,函数会被立即调 ...