Time Limit: 1000MS Memory Limit: 65536K

Special Judge

Description

The City has a number of municipal buildings and a number of fallout shelters that were build specially to hide municipal workers in case of a nuclear war. Each fallout shelter has a limited capacity in terms of a number of people it can accommodate, and there’s almost no excess capacity in The City’s fallout shelters. Ideally, all workers from a given municipal building shall run to the nearest fallout shelter. However, this will lead to overcrowding of some fallout shelters, while others will be half-empty at the same time.

To address this problem, The City Council has developed a special evacuation plan. Instead of assigning every worker to a fallout shelter individually (which will be a huge amount of information to keep), they allocated fallout shelters to municipal buildings, listing the number of workers from every building that shall use a given fallout shelter, and left the task of individual assignments to the buildings’ management. The plan takes into account a number of workers in every building - all of them are assigned to fallout shelters, and a limited capacity of each fallout shelter - every fallout shelter is assigned to no more workers then it can accommodate, though some fallout shelters may be not used completely.

The City Council claims that their evacuation plan is optimal, in the sense that it minimizes the total time to reach fallout shelters for all workers in The City, which is the sum for all workers of the time to go from the worker’s municipal building to the fallout shelter assigned to this worker.

The City Mayor, well known for his constant confrontation with The City Council, does not buy their claim and hires you as an independent consultant to verify the evacuation plan. Your task is to either ensure that the evacuation plan is indeed optimal, or to prove otherwise by presenting another evacuation plan with the smaller total time to reach fallout shelters, thus clearly exposing The City Council’s incompetence.

During initial requirements gathering phase of your project, you have found that The City is represented by a rectangular grid. The location of municipal buildings and fallout shelters is specified by two integer numbers and the time to go between municipal building at the location (Xi, Yi) and the fallout shelter at the location (Pj, Qj) is Di,j = |Xi - Pj| + |Yi - Qj| + 1 minutes.

Input

The input consists of The City description and the evacuation plan description. The first line of the input file consists of two numbers N and M separated by a space. N (1 ≤ N ≤ 100) is a number of municipal buildings in The City (all municipal buildings are numbered from 1 to N). M (1 ≤ M ≤ 100) is a number of fallout shelters in The City (all fallout shelters are numbered from 1 to M).

The following N lines describe municipal buildings. Each line contains there integer numbers Xi, Yi, and Bi separated by spaces, where Xi, Yi (-1000 ≤ Xi, Yi ≤ 1000) are the coordinates of the building, and Bi (1 ≤ Bi ≤ 1000) is the number of workers in this building.

The description of municipal buildings is followed by M lines that describe fallout shelters. Each line contains three integer numbers Pj, Qj, and Cj separated by spaces, where Pi, Qi (-1000 ≤ Pj, Qj ≤ 1000) are the coordinates of the fallout shelter, and Cj (1 ≤ Cj ≤ 1000) is the capacity of this shelter.

The description of The City Council’s evacuation plan follows on the next N lines. Each line represents an evacuation plan for a single building (in the order they are given in The City description). The evacuation plan of ith municipal building consists of M integer numbers Ei,j separated by spaces. Ei,j (0 ≤ Ei,j ≤ 1000) is a number of workers that shall evacuate from the ith municipal building to the jth fallout shelter.

The plan in the input file is guaranteed to be valid. Namely, it calls for an evacuation of the exact number of workers that are actually working in any given municipal building according to The City description and does not exceed the capacity of any given fallout shelter.

Output

If The City Council’s plan is optimal, then write to the output the single word OPTIMAL. Otherwise, write the word SUBOPTIMAL on the first line, followed by N lines that describe your plan in the same format as in the input file. Your plan need not be optimal itself, but must be valid and better than The City Council’s one.

Sample Input

3 4

-3 3 5

-2 -2 6

2 2 5

-1 1 3

1 1 4

-2 -2 7

0 -1 3

3 1 1 0

0 0 6 0

0 3 0 2

Sample Output

SUBOPTIMAL

3 0 1 1

0 0 6 0

0 4 0 1

Source

Northeastern Europe 2002

题意:有n个市政大楼和m个避难所,每一个市政大楼都有一定的人数,而每一个避难所也有一定的容量,从某个市政大楼到某个避难所的花费是曼哈顿距离+1,现在委员会给你一个有效的疏散计划,判断还有没有这个计划更优的方案。

分析:开始理解题意的时候,以为用最小费用跑一次,判断最小费用与所给的答案,但是TLE,后来在讨论中看到最小费用会超时,说是用消圈的方式判断是不是还有更优解。

消圈定理:残留网络里如果存在负费用圈,那么当前流不是最小费用流。

负圈有必要解释一下:费用总和是负数,且每条边的剩余流量大于0

按照所给的信息建图。

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <queue>
#include <algorithm>

using namespace std;

const int INF = 0x3f3f3f3f;

const int Max = 210;

typedef struct node
{
    int x,y,num;
}Point;

int Map[Max][Max],Cost[Max][Max],Num[Max];

Point  Z[Max],B[Max];

int dis[Max],pre[Max],Du[Max];

bool vis[Max];

int n,m,s,t;

int ok(Point a,Point b)
{
    return abs(a.x-b.x)+abs(a.y-b.y)+1;
}

int SPFA() //判断是不是有负圈
{
    for(int i=0;i<=t;i++)
    {
        dis[i] = INF;

        pre[i] = -1;

        Du[i] = 0;

        vis[i]=false;
    }
    queue<int>Q;

    dis[t] = 0,vis[t] = true;

    Q.push(t);

    Du[t] = 1;

    while(!Q.empty())
    {
        int u = Q.front();

        Q.pop();

        for(int i=0;i<=t;i++)
        {
            if(Map[u][i]&&dis[i]>dis[u]+Cost[u][i])
            {
                dis[i] = dis[u]+Cost[u][i];

                pre[i] = u;

                if(!vis[i])
                {
                    vis[i]=true;

                    Q.push(i);

                    Du[i]++;

                    if(Du[i]>t)
                    {
                        return i;
                    }
                }
            }
        }

        vis[u]=false;
    }

    return -1;
}

int main()
{

    int num;

    while(~scanf("%d %d",&n,&m))
    {
        s= 0, t =n+m+1;

        memset(Map,0,sizeof(Map));

        memset(Cost,0,sizeof(Cost));

        memset(Num,0,sizeof(Num));

        for(int i=1;i<=n;i++) scanf("%d %d %d",&Z[i].x,&Z[i].y,&Z[i].num);

        for(int i=1;i<=m;i++) scanf("%d %d %d",&B[i].x,&B[i].y,&B[i].num);

        for(int i=1;i<=n;i++)//市政与避难所之间建图
        {
            for(int j=1;j<=m;j++)
            {
                Cost[i][j+n] = ok(Z[i],B[j]);

                Cost[j+n][i] = -Cost[i][j+n];

                Map[i][j+n] = Z[i].num;
            }
        }
        int ans = 0;

        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                scanf("%d",&num);

                Map[i][j+n]-= num;

                Map[j+n][i] = num;

                Num[j]+=num;
            }
        }

        for(int i=1;i<=m;i++)
        {
            Map[i+n][t] = B[i].num-Num[i];

            Map[t][i+n] = Num[i];
        }

        ans = SPFA();

        if(ans==-1)
        {
            printf("OPTIMAL\n");
        }
        else
        {
            printf("SUBOPTIMAL\n");

            memset(vis,false,sizeof(vis));

            int v = ans;

            while(!vis[v])
            {
                vis[v]=true;

                v = pre[v];
            }

            ans  = v;

            do
            {
                Map[pre[v]][v] --;

                Map[v][pre[v]]++;

                v = pre[v];
            }
            while(v!=ans);

            for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=m;j++)
                {
                    if(j!=1)
                    {
                        printf(" ");
                    }

                    printf("%d",Map[j+n][i]);
                }

                printf("\n");
            }
        }
    }
    return 0;
}

Evacuation Plan-POJ2175最小费用消圈算法的更多相关文章

  1. poj 2175 Evacuation Plan 最小费用流判定,消圈算法

    题目链接 题意:一个城市有n座行政楼和m座避难所,现发生核战,要求将避难所中的人员全部安置到避难所中,每个人转移的费用为两座楼之间的曼哈顿距离+1,题目给了一种方案,问是否为最优方案,即是否全部的人员 ...

  2. POJ 2157 Evacuation Plan [最小费用最大流][消圈算法]

    ---恢复内容开始--- 题意略. 这题在poj直接求最小费用会超时,但是题意也没说要求最优解. 根据线圈定理,如果一个跑完最费用流的残余网络中存在负权环,那么顺着这个负权环跑流量为1那么会得到更小的 ...

  3. POJ2175 Evacuation Plan

    Evacuation Plan Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4617   Accepted: 1218   ...

  4. nyoj 712 探 寻 宝 藏--最小费用最大流

    问题 D: 探 寻 宝 藏 时间限制: 1 Sec  内存限制: 128 MB 题目描述 传说HMH大沙漠中有一个M*N迷宫,里面藏有许多宝物.某天,Dr.Kong找到了迷宫的地图,他发现迷宫内处处有 ...

  5. poj 2195 二分图带权匹配+最小费用最大流

    题意:有一个矩阵,某些格有人,某些格有房子,每个人可以上下左右移动,问给每个人进一个房子,所有人需要走的距离之和最小是多少. 貌似以前见过很多这样类似的题,都不会,现在知道是用KM算法做了 KM算法目 ...

  6. hdu 2686 Matrix 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2686 Yifenfei very like play a number game in the n*n ...

  7. hdu 1533 Going Home 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1533 On a grid map there are n little men and n house ...

  8. 【进阶——最小费用最大流】hdu 1533 Going Home (费用流)Pacific Northwest 2004

    题意: 给一个n*m的矩阵,其中由k个人和k个房子,给每个人匹配一个不同的房子,要求所有人走过的曼哈顿距离之和最短. 输入: 多组输入数据. 每组输入数据第一行是两个整型n, m,表示矩阵的长和宽. ...

  9. SGU 185.Two shortest (最小费用最大流)

    时间限制:0.25s 空间限制:4M 题意: 在n(n<=400)个点的图中,找到并输出两条不想交的最短路.不存在输出“No sulotion”: Solution: 最小费用最大流 建图与po ...

随机推荐

  1. 说说设计模式~大话目录(Design Pattern)

    回到占占推荐博客索引 设计模式(Design pattern)与其它知识不同,它没有华丽的外表,没有吸引人的工具去实现,它是一种心法,一种内功,如果你希望在软件开发领域有一种新的突破,一个质的飞越,那 ...

  2. Windows Phone 二、WP控件

  3. HTML语义化:HTML5新标签——template

    一.前言 当我们使用String-base的模板引擎(如Handlebars.js等)时,要么就通过外部文件存放模板文本,需要时再通过XHR或script标签加载进来:要么通过<script t ...

  4. AspNetUsers

    public class CanDooDbContext : DbContextBase<CanDooDbContext> { protected override void OnMode ...

  5. 【转】ArrayList其实就那么一回事儿之源码浅析

    转自:http://www.cnblogs.com/dongying/p/4013271.html?utm_source=tuicool&utm_medium=referral ArrayLi ...

  6. Windows Live Writer技巧

    (此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:今天的内容虽然和开发技术无关,却应该和喜欢写东西的技术人员有关,比如我所有的文章都是用 ...

  7. Linux内核NAPI机制分析

    转自:http://blog.chinaunix.net/uid-17150-id-2824051.html 简介:NAPI 是 Linux 上采用的一种提高网络处理效率的技术,它的核心概念就是不采用 ...

  8. 通过桥接虚拟网卡使VMWare和宿主机实现双向通讯

    0.为什么选择虚拟网卡和桥接模式 首先虚拟机网络设置为NAT,虚拟机实现上网是很方便的,但是宿主机访问虚拟机就比较麻烦了(需要单独配置端口转发),桥接就能很好的解决这个问题,桥接模式会把虚拟机当做宿主 ...

  9. Cisco路由器的6种模式

    Cisco路由器的6种模式 -------------------------------------------------------------------------------------- ...

  10. 每天一个Linux命令(3): cd

    Linux cd 命令可以说是Linux中最基本的命令语句,其他的命令语句要进行操作,都是建立在使用 cd 命令上的. 所以,学习Linux 常用命令,首先就要学好 cd 命令的使用方法技巧. 1.  ...