功能:输入一个N个点,M条单向边的有向图,求出此图全部的强连通分量

原理:tarjan算法(百度百科传送门),大致思想是时间戳与最近可追溯点

这个玩意不仅仅是求强连通分量那么简单,而且对于一个有环的有向图可以有效的进行缩点(每个强连通分量缩成一个点),构成一个新的拓扑图(如BZOJ上Apio2009的那个ATM)(PS:注意考虑有些图中不能通过任意一个单独的点到达全部节点,所以不要以为直接tarjan(1)就了事了,还要来个for循环,不过实际上复杂度还是O(M),因为遍历过程中事实上每个边还是只会被走一次^_^)

 type
point=^node;
node=record
g:longint;
next:point;
end; var
i,j,k,l,m,n,h,t,ans:longint;
ss,s:array[..] of boolean;
low,dfn,b,f:array[..] of longint;
a:array[..] of point;
p:point;
function min(x,y:longint):longint;inline;
begin
if x<y then min:=x else min:=y;
end;
function max(x,y:longint):longint;inline;
begin
if x>y then max:=x else max:=y;
end;
procedure add(x,y:longint);inline;
var p:point;
begin
new(p);
p^.g:=y;
p^.next:=a[x];
a[x]:=p;
end;
procedure tarjan(x:longint);
var i,j,k:longint;p:point;
begin
inc(h);low[x]:=h;dfn[x]:=h;
inc(t);f[t]:=x;s[x]:=true;ss[x]:=true;
p:=a[x];
while p<>nil do
begin
if not(s[p^.g]) then
begin
tarjan(p^.g);
low[x]:=min(low[x],low[p^.g]);
end
else if ss[p^.g] then low[x]:=min(low[x],dfn[P^.g]);
p:=p^.next;
end;
if low[x]=dfn[x] then
begin
inc(ans);
while f[t+]<>x do
begin
ss[f[t]]:=false;
b[f[t]]:=ans;
dec(t);
end;
end;
end;
begin
readln(n,m);
for i:= to n do a[i]:=nil;
for i:= to m do
begin
readln(j,k);
add(j,k);
end;
fillchar(s,sizeof(s),false);
fillchar(ss,sizeof(ss),false);
fillchar(f,sizeof(f),);
fillchar(low,sizeof(low),);
fillchar(dfn,sizeof(dfn),);
fillchar(b,sizeof(b),);
for i:= to n do
if s[i]=false then tarjan(i);
for i:= to n do a[i]:=nil;
for i:= to n do add(b[i],i);
for i:= to ans do
begin
p:=a[i];
write('No. ',i,' :');
while p<>nil do
begin
write(' ',p^.g);
p:=p^.next;
end;
writeln;
end;
readln;
end.

算法模板——Tarjan强连通分量的更多相关文章

  1. 『Tarjan算法 有向图的强连通分量』

    有向图的强连通分量 定义:在有向图\(G\)中,如果两个顶点\(v_i,v_j\)间\((v_i>v_j)\)有一条从\(v_i\)到\(v_j\)的有向路径,同时还有一条从\(v_j\)到\( ...

  2. tarjan强连通分量模板(pascal)

    友好城市 [问题描述]小 w 生活在美丽的 Z 国. Z 国是一个有 n 个城市的大国, 城市之间有 m 条单向公路(连接城市 i. j 的公路只能从 i 连到 j). 城市 i. j 是友好城市当且 ...

  3. Tarjan算法求出强连通分量(包含若干个节点)

    [功能] Tarjan算法的用途之一是,求一个有向图G=(V,E)里极大强连通分量.强连通分量是指有向图G里顶点间能互相到达的子图.而如果一个强连通分量已经没有被其它强通分量完全包含的话,那么这个强连 ...

  4. Tarjan算法求有向图强连通分量并缩点

    // Tarjan算法求有向图强连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> #inc ...

  5. Tarjan 强连通分量 及 双联通分量(求割点,割边)

    Tarjan 强连通分量 及 双联通分量(求割点,割边) 众所周知,Tarjan的三大算法分别为 (1)         有向图的强联通分量 (2)         无向图的双联通分量(求割点,桥) ...

  6. [模板] tarjan/联通分量/dfs树

    //to update 边的分类 有向图边分为四类: 树边, 前向边, 返祖边(后向边), 横叉边. 上图: 判定 有向图 对图进行dfs, 不考虑已经遍历过的点, 得到dfs序 \(dfn_i\). ...

  7. tarjan 强连通分量

    一.强连通分量定义 有向图强连通分量在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly c ...

  8. codeforces 711 D.Directed Roads(tarjan 强连通分量 )

    题目链接:http://codeforces.com/contest/711/problem/D 题目大意:Udayland有一些小镇,小镇和小镇之间连接着路,在某些区域内,如果从小镇Ai开始,找到一 ...

  9. 1051: [HAOI2006]受欢迎的牛 (tarjan强连通分量+缩点)

    题目大意:CodeVs2822的简单版本 传送门 $Tarjan$强连通分量+缩点,若连通块的个数等于一则输出n:若缩点后图中出度为0的点个数为1,输出对应连通块内的点数:否则输出0: 代码中注释部分 ...

随机推荐

  1. jsp jsp指令

    JSP 由HTML和java语句拼接而成的文本,后缀名为.jsp 1.Jsp翻译成servlet:先翻译,Tomcat将翻译后的文件放置在安装目录下(所有JSP页面本质上就是Servlet程序) 2. ...

  2. 石子合并[DP-N3]

    题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  3. PyCharm5.0.2最新版破解注册激活码(图文版)

    下载PyCharm http://download-cf.jetbrains.com/python/pycharm-professional-5.0.2.exe 安装PyCharm 设置激活服务器   ...

  4. 基于vs2005以上版本Qt程序发布的注意事项(讲了manifest的问题)

    最近发现了一个非常恼人的程序deployment的问题,估计大家有可能也会遇到,特此memo. 问题的出现我觉得主要还是微软搞的花头太多, 一个不知所谓的manifest文件让本来简单的程序发布变得困 ...

  5. Weka中EM算法详解

    private void EM_Init (Instances inst) throws Exception { int i, j, k; // 由于EM算法对初始值较敏感,故选择run k mean ...

  6. [转]java gridbag 说明

    gridx = 2; // X2 gridy = 0; // Y0 gridwidth = 1; // 横占一个单元格 gridheight = 1; // 列占一个单元格 weightx = 0.0 ...

  7. power designer 水电费缴纳系统的设计

    alter table POWER drop constraint FK_POWER_REFERENCE_USERS; drop table POWER cascade constraints; /* ...

  8. hdu1556 Color the ball

    #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> ...

  9. 微信js-sdk调用

    之前在做微信的时候,在微信支付还有调起微信扫一扫的时候,用过js-sdk.最近,被几个做前端的同学问到了具体的流程,想想,还是写下来好点.     微信js-sdk,是微信提供给网页开发设计者使用的, ...

  10. jemalloc 快速上手攻略

    引言 - 赠送个 Cygwin (加精) Cygwin 有它存在的合理性. 至少比 wine 好太多了. 它主要功能是在winds上面简易的模拟出linux环境, 比虚拟机 轻量一点点. 坑也不少, ...