BZOJ_2303_[Apio2011]方格染色 _并查集

Description

Sam和他的妹妹Sara有一个包含n × m个方格的
表格。她们想要将其的每个方格都染成红色或蓝色。
出于个人喜好,他们想要表格中每个2 ×   2的方形区
域都包含奇数个(1 个或 3 个)红色方格。例如,右
图是一个合法的表格染色方案(在打印稿中,深色代
表蓝色,浅色代表红色) 。
可是昨天晚上,有人已经给表格中的一些方格染上了颜色!现在Sam和Sara
非常生气。不过,他们想要知道是否可能给剩下的方格染上颜色,使得整个表格
仍然满足她们的要求。如果可能的话,满足他们要求的染色方案数有多少呢?

Input

输入的第一行包含三个整数n, m和k,分别代表表格的行数、列数和已被染
色的方格数目。
之后的k行描述已被染色的方格。其中第 i行包含三个整数xi, yi和ci,分别
代表第 i 个已被染色的方格的行编号、列编号和颜色。ci为 1 表示方格被染成红
色,ci为 0表示方格被染成蓝色。

Output

输出一个整数,表示可能的染色方案数目 W 模 10^9得到的值。(也就是说,如果 W大于等于10^9,则输出 W被10^9除所得的余数)。

对于所有的测试数据,2 ≤ n, m ≤ 106
,0 ≤ k ≤ 10^6
,1 ≤ xi ≤ n,1 ≤ yi ≤ m。

Sample Input

3 4 3
2 2 1
1 2 0
2 3 1

Sample Output

8

对于(i,j)有a[i][j]^a[i+1][j]^a[i][j+1]^a[i+1][j+1]=1
从(1,1)到(i-1,j-1)的这个式子全都异或起来。
得到a[1][1]^a[1][j]^a[i][1]^a[i][j]=[i%2==0&&j%2==0]。
即确定了第一行和第一列的颜色就确定了整个方格的颜色。
于是枚举(1,1)的颜色,对于每个(x,y,c),把a[1][y]和a[x][1]用并查集连起来。
有环则无解,否则答案等于二的连通块个数-1次方。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
#define N 2000050
inline char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int rd() {
register int x=0;
register char s=nc();
while(s<'0'||s>'9') s=nc();
while(s>='0'&&s<='9') x=(x<<3)+(x<<1)+s-'0',s=nc();
return x;
}
int fa[N],n,m,a[N],k,xx[N],yy[N],cc[N];
ll mod=1000000000;
ll qp(ll x,ll y) {ll re=1; for(;y;y>>=1ll,x=x*x%mod) if(y&1ll) re=re*x%mod; return re;}
int find(int x) {
if(fa[x]==x) return x;
int tmp=find(fa[x]);
a[x]^=a[fa[x]];
return fa[x]=tmp;
}
int main() {
n=rd(); m=rd(); k=rd();
register int i;
for(i=1;i<=k;i++) {
xx[i]=rd(); yy[i]=rd(); cc[i]=rd();
}
int col1,flg[2];
flg[0]=flg[1]=0;
ll ans=0;
for(col1=0;col1<2;col1++) {
int cnt=0;
for(i=1;i<=n+m-1;i++) fa[i]=i,a[i]=0;
for(i=1;i<=k;i++) {
int p=col1^cc[i]^(xx[i]%2==0&&yy[i]%2==0);
int x=xx[i],y=yy[i]+n-1;
int dx=find(x),dy=find(y);
if(dx!=dy) {
fa[dx]=dy;
a[dx]=a[y]^a[x]^p;
}else {
if((a[x]^a[y])!=p) {
flg[col1]=1; break;
}
}
}
for(i=1;i<=n+m-1;i++) {
if(fa[i]==i) {
cnt++;
}
}
cnt--;
if(!flg[col1]) {
ans=(ans+qp(2,cnt))%mod;
}
}
printf("%lld\n",ans);
}

BZOJ_2303_[Apio2011]方格染色 _并查集的更多相关文章

  1. BZOJ2303: [Apio2011]方格染色 【并查集】

    Description Sam和他的妹妹Sara有一个包含n × m个方格的表格.她们想要将其的每个方格都染成红色或蓝色.出于个人喜好,他们想要表格中每个2 × 2的方形区域都包含奇数个(1 个或 3 ...

  2. bzoj 2303: [Apio2011]方格染色【并查集】

    画图可知,每一行的状态转移到下一行只有两种:奇数列不变,偶数列^1:偶数列不变,奇数列^1 所以同一行相邻的变革染色格子要放到同一个并查集里,表示这个联通块里的列是联动的 最后统计下联通块数(不包括第 ...

  3. BZOJ2303 APIO2011方格染色(并查集)

    比较难想到的是将题目中的要求看做异或.那么有ai,j^ai+1,j^ai,j+1^ai+1,j+1=1.瞎化一化可以大胆猜想得到a1,1^a1,j^ai,1^ai,j=(i-1)*(j-1)& ...

  4. [BZOJ2303][Apio2011]方格染色

    [BZOJ2303][Apio2011]方格染色 试题描述 Sam和他的妹妹Sara有一个包含n × m个方格的 表格.她们想要将其的每个方格都染成红色或蓝色. 出于个人喜好,他们想要表格中每个2 × ...

  5. BZOJ_3362_[Usaco2004 Feb]Navigation Nightmare 导航噩梦_并查集

    BZOJ_3362_[Usaco2004 Feb]Navigation Nightmare 导航噩梦_并查集 Description     农夫约翰有N(2≤N≤40000)个农场,标号1到N,M( ...

  6. BZOJ_1015_[JSOI2008]星球大战_并查集

    BZOJ_1015_[JSOI2008]星球大战_并查集 题意:很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系.某一天,凭着一个偶然的 机遇,一支反抗军摧毁了帝国的超级武器, ...

  7. BZOJ_1998_[Hnoi2010]Fsk物品调度_并查集+置换

    BZOJ_1998_[Hnoi2010]Fsk物品调度_并查集+置换 Description 现在找工作不容易,Lostmonkey费了好大劲才得到fsk公司基层流水线操作员的职位.流水线上有n个位置 ...

  8. BZOJ_2443_[Usaco2011 Open]奇数度数 _并查集+树形DP

    BZOJ_2443_[Usaco2011 Open]奇数度数 _并查集. Description 奶牛们遭到了进攻!在他们的共和国里,有N(1 <= N <=50,000)个城市,由M(1 ...

  9. BZOJ 2303: [Apio2011]方格染色 [并查集 数学!]

    题意: $n*m:n,m \le 10^6$的网格,每个$2 \times 2$的方格必须有1个或3个涂成红色,其余涂成蓝色 有一些方格已经有颜色 求方案数 太神了!!!花我三节课 首先想了一下只有两 ...

随机推荐

  1. 本地计算机上的XXX服务启动后停止。某些服务在未由其它服务或程序使用时将自动停止。咋整?

    用C#写个windows服务,安装部署后去启动时,提示说“本地计算机上的XXX服务启动后停止.某些服务在未由其它服务或程序使用时将自动停止”.咋整?就像下面酱紫: 度娘说不知道咋整,我想把程序附加到w ...

  2. ES6新特性-------解构、参数、模块和记号(续)

    六.解构 解构提供了一个方便的地从对象或数组中提取数据的方法,请看下面的例子: //ES6 let [x,y]=[1,2];//x=1,y=2 //ES5 var arr=[1,2]; var x=a ...

  3. Linux系统重启network服务失败

    问题描述 使用KVM通过修改配置文件配置好网卡IP,使用命令行service network restart 重启网络服务失败. 如图: 使用图形化管理工具配置IP,在系统界面右上角可以看到网卡状态为 ...

  4. 编写可维护的JS 06

    7.事件处理 //典型用法 function handlerClick(event){ var popup = document.getElementById('popup'); popup.styl ...

  5. 去除测序reads中的接头:adaptor

    之前用c写过一个程序,查找reads中是否包含了adaptor,如果检测到的话就过滤掉含有adaptor的reads,这次在过滤完数据之后发现接头序列比较多,为了提升组装效果,又不能很大地影响数据量, ...

  6. 富文本编辑器layedit,调用setContent方法会报错

    需要把layedit.js里的setContent 函数的 layedit.sync(index)); 改成 this.sync(index));

  7. B/S与C/S的差别

    前一段时间已经结束了C/S的学习,開始了B/S的旅程,那么为什么我们要学习这两个,这两个有什么差别呢?这些差别你知道多少呢? B/S结构.即Browser/Server(浏览器/server)结构.是 ...

  8. 【BZOJ1951】古代猪文(CRT,卢卡斯定理)

    [BZOJ1951]古代猪文(CRT,卢卡斯定理) 题面 BZOJ 洛谷 题解 要求什么很显然吧... \[Ans=G^{\sum_{k|N}{C_N^k}}\] 给定的模数是一个质数,要求解的东西相 ...

  9. BZOJ 2707: [SDOI2012]走迷宫 拓扑+高斯消元+期望概率dp+Tarjan

    先Tarjan缩点 强连通分量里用高斯消元外面直接转移 注意删掉终点出边和拓扑 #include<cstdio> #include<cstring> #include<a ...

  10. 前端面试:提升web性能

    1,减少HTTP请求数 A,从设计实现层简化页面 B,合理设置HTTP缓存 C,资源合并与压缩.如果可以的话,尽可能的将外部脚本,央视进行合并,多个合为一,css,javascript,image都可 ...