题目链接

题意简述

仰慕喜欢同色奶牛的奶牛喜欢同色 (禁止套娃 ,求一种方案,奶牛喜欢的颜色种数最多,多种方案求字典序最小。

题目解析

这道题我最先想到的居然是二分+并查集,我在想啥

咳咳

首先,考虑一个比较简单的情况,假如图长这样:

仰慕关系:\(6,4\)仰慕\(5\),\(3,1\)仰慕\(2\)

同一头奶牛喜欢的颜色当然是相同的,\(6,4\)仰慕对象的喜好颜色一样,所以\(6,4\)喜欢的颜色一样,同理\(3,1\)喜欢的颜色一样。我们把他们用并查集套起来,数有几个块就可以了

然后考虑更复杂的情况:

如图,\(4\)是一只花心的奶牛,它不仅仰慕\(5\),还仰慕\(2\)。

同一头奶牛喜欢的颜色当然是相同的,\(4\)只有一种喜欢的颜色,而\(6\)和\(4\)喜欢颜色一样,因为它们都喜欢\(5\),同理,\(3,1\)喜好颜色也和\(4\)一样,那么两个连通块就通过\(4\)联通了。

为了方便写代码,我们这样看这个图:(就是把边反了个向,好写代码

从两只站在仰慕链顶端的牛出发(其实也不一定是从它们出发,反正所有牛的儿子都要并在一起,话说也不一定有站在仰慕链顶端的牛,没有保证是\(DAG\)),把它们的儿子并在一起,如果碰到了\(4\)这样的花心结点,就把两个并查集合在一起。

至于原图,一个并查集里的点可以当成一个点来处理,也就是要缩点。具体的方法很暴力,就是把别人的儿子接到我这里来,然后把别人和它的儿子都从图里删掉。为了保障复杂度,用启发式合并,也就是小的集合合并到大集合上去。


►Code View

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
#define LL long long
#define N 200005
#define INF 0x3f3f3f3f
int rd()
{
int x=0,f=1;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1; c=getchar();}
while(c>='0'&&c<='9'){x=(x<<3)+(x<<1)+(c^48); c=getchar();}
return f*x;
}
vector<int>G[N];
int n,m,f[N]/*连通块的大小 启发式合并要用到 初始为-1 表示自己是根*/,c[N];
int Find(int x)
{
if(f[x]<0) return x;
return f[x]=Find(f[x]);
}
void dfs(int u)
{
if(G[u].size()<2) return ;
int x=Find(G[u][0]);
for(int i=1;i<G[u].size();i++)
{
int y=Find(G[u][i]);
if(x==y)continue;
if(f[x]<=f[y])
{
f[x]+=f[y];
f[y]=x;
for(int j=0;j<G[y].size();j++)
G[x].push_back(G[y][j]);
G[y].clear();
}
else
{
f[y]+=f[x];
f[x]=y;
for(int j=0;j<G[x].size();j++)
G[y].push_back(G[x][j]);
G[x].clear();
x=y;
}
}
G[u].clear();
G[u].push_back(x);
dfs(x);
}
int main()
{
memset(f,-1,sizeof(f));
n=rd(),m=rd();
for(int i=1;i<=m;i++)
{
int u=rd(),v=rd();
G[u].push_back(v);
}
for(int i=1;i<=n;i++)
dfs(i);
int cnt=0;
for(int i=1;i<=n;i++)
{
int fa=Find(i);
if(!c[fa]) c[fa]=++cnt;
printf("%d\n",c[fa]);
}
return 0;
}

USACO 2020 OPEN Favorite Colors【并查集-启发式合并-思考】的更多相关文章

  1. BZOJ2733[HNOI2012]永无乡——线段树合并+并查集+启发式合并

    题目描述 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达 ...

  2. BZOJ 4668: 冷战 并查集启发式合并/LCT

    挺好想的,最简单的方法是并查集启发式合并,加暴力跳父亲. 然而,这个代码量比较小,比较好写,所以我写了 LCT,更具挑战性. #include <cstdio> #include < ...

  3. [HDU 3712] Fiolki (带边权并查集+启发式合并)

    [HDU 3712] Fiolki (带边权并查集+启发式合并) 题面 化学家吉丽想要配置一种神奇的药水来拯救世界. 吉丽有n种不同的液体物质,和n个药瓶(均从1到n编号).初始时,第i个瓶内装着g[ ...

  4. [BZOJ 4668]冷战(带边权并查集+启发式合并)

    [BZOJ 4668]冷战(并查集+启发式合并) 题面 一开始有n个点,动态加边,同时查询u,v最早什么时候联通.强制在线 分析 用并查集维护连通性,每个点x还要另外记录tim[x],表示x什么时间与 ...

  5. BZOJ 3673: 可持久化并查集(可持久化并查集+启发式合并)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3673 题意: 思路: 可持久化数组可以用可持久化线段树来实现,并查集的查询操作和原来的一般并查集操作 ...

  6. Codeforces 1166F 并查集 启发式合并

    题意:给你一张无向图,无向图中每条边有颜色.有两种操作,一种是询问从x到y是否有双彩虹路,一种是在x到y之间添加一条颜色为z的边.双彩虹路是指:如果给这条路径的点编号,那么第i个点和第i - 1个点相 ...

  7. [bzoj3123][sdoi2013森林] (树上主席树+lca+并查集启发式合并+暴力重构森林)

    Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...

  8. 【AGC014E】Blue and Red Tree 并查集 启发式合并

    题目描述 有一棵\(n\)个点的树,最开始所有边都是蓝边.每次你可以选择一条全是蓝边的路径,删掉其中一条,再把这两个端点之间连一条红边.再给你一棵树,这棵树的所有边都是红边,问你最终能不能把原来的树变 ...

  9. 2018.08.21 bzoj4668: 冷战(并查集+启发式合并)

    传送门 可以发现需要维护连通性和两点连通时间. 前者显然是并查集的常规操作,关键就在于如何维护两点的连通时间. 然后会想到这个时候不能用路径压缩了,因为它会破坏原本树形集合的结构,因此可以启发式按si ...

  10. BZOJ4602: [Sdoi2016]齿轮(并查集 启发式合并)

    题意 题目链接 Sol 和cc的一道题很像啊 对于初始的\(N\)个点,每加一条限制实际上就是合并了两个联通块. 那么我们预处理出\(val[i]\)表示的是\(i\)节点所在的联通块根节点转了\(1 ...

随机推荐

  1. IOS开发之新浪围脖

    IOS开发和Web开发一样,网络请求方式包括Get和Post方式.Get和Post两者有和特点和区别,在本篇博客中不做过多的论述,本篇的重点在于如何GET数据和POST数据.下面还会提到如何在我们的项 ...

  2. ToolTipController 事件触发显示时 避免闪烁的处理方法

    private DevExpress.Utils.ToolTipController toolTipController1; private DevExpress.Utils.ToolTipContr ...

  3. treeview所有节点递归解法(转+说明)或者说递归的实际应用

    public void PrintTreeViewNode(TreeNodeCollection node) { foreach (TreeNode n in node) { Response.Wri ...

  4. Python2.5-原理之模块

    此部分来自于<Python学习手册>第五部分 一.模块(21章) 模块是最高级别的程序组织单元,它将程序代码和数据封装起来以便重用..模块往往对应于python程序文件.每个文件就是一个模 ...

  5. [cf140e]New Year Garland

    Description 用$m$种颜色的彩球装点$n$层的圣诞树.圣诞树的第$i$层恰由$l[i]$个彩球串成一行,且同一层内的相邻彩球颜色不同,同时相邻两层所使用彩球的颜色集合不同. 求有多少种装点 ...

  6. maven中GroupID 和ArtifactID怎么写

    groupId :the unique identifier of the organization or group that created the project artifactId :uni ...

  7. asp.net mvc 后台怎么接受前端返回的array list dictionary

    参考了别人的文章,我这样尝试去写: 数据源:memberInRoles var memberInRoles= {}; for(var i=0;i<sureOptions.length;i++){ ...

  8. 017. ADO.NET Connection和command及DataReader

    ADO.NET主要包括Connection , command , DataReader, DataSet, DataAdapter5个对象, 通过这5个对象可以对数据库进行查询, 添加, 修改及删除 ...

  9. js常用正则表达式汇总

    常用的前台正则表达式汇总. 1.手机号验证 手机格式以1开头,现有的手机格式一般为13.14.15.17.18等 var regMobile = /^1[34578]\d{9}$/; //或者为/^1 ...

  10. 利用Javamail接收QQ邮箱和Gmail邮箱(转)

    求大神解答 Java代码: public class SendMailController { //@Autowired private JavaMailSenderImpl mailSender; ...