本系列主要参考《Unity Shaders and Effects Cookbook》一书(感谢原书作者),同时会加上一点个人理解或拓展。

这里是本书所有的插图。这里是本书所需的代码和资源(当然你也可以从官网下载)。

========================================== 分割线 ==========================================

写在前面

最近由于成为研一新生,被入学的各种事情耽误,好久没有更新博客,好惭愧。。。刚收拾好我就来更新博客啦~快表扬我一下。。。前几天有好心人给我提建议说代码和解释分开容易导致学习不连贯,其实我也有这个感觉。我我为什么不写到注释里呢?一个是因为解释的内容比较多,注释里面说不太清楚;更重要的原因是,我的Mono不支持中文输入。。。只能复制粘贴!如果有人知道Mac的Mono里面怎么输入中文可以告诉我。。。为了让学习过程更连贯,以后的“解释”部分大部分都会移到“实现”中每一步的解释里面!

这节是一个新的章节,倒数第二章喽~Render Texture是一个非常好用的东西,通过本章我们就来学习如何用它来实现一些画面特效,像老电影效果、雪花效果等等。

先来介绍一下本章。学习编写Shader一个很有用的地方就是可以创建各种自定义的画面特效,也被称为后期特效(post effects)。使用这些画面特效,我们可以创建很多美妙的实时图像,例如高光(Bloom),运动模糊(Motion Blur),HDR特效(HDR effects)等等。大多数市面上的现代游戏使用了很多这样的画面特效,以此来得到景深效果,高光效果,甚至是进行颜色矫正。

通过本章,我们将学习如何建立一个脚本系统,来控制创建这些画面特效。我们会学习什么是render texture,什么是深度缓冲,以及怎样像Photoshop那样创建画面特效。通过这些内容,你不仅可以进一步加深Shader知识,还可以自己动脑在Unity中创建很棒的实时渲染。

那么怎样创建画面特效呢?

一般,我们会抓取一个完整的画面图像(或纹理),使用Shader在GPU上处理它的像素后,再返回给Unity的渲染器渲染到屏幕上,也就是一个后期处理的过程。这允许我们可以对渲染后的游戏图像进行实时地逐像素操作,从而给了我们一个全局的控制能力。

我们想象一个场景。我们需要调整游戏最后的画面对比度。如果我们去调整每个材质,虽然的确可能做到,但这会非常麻烦。而通过利用画面特效,我们就可以整体调整画面最后的效果。

为了让我们的画面特效系统能够建立并正常运行,我们需要创建一个单独的脚本来作为游戏当前已渲染的图像(也就是Unity的render texture)的通信员。这个脚本会把当前的render texture传递给Shader。

我们第一个画面特效是一个非常简单的灰度效果。那,开始吧!

准备工作

  1. 创建一个新的场景,创建一个平行光。
  2. 创建一个新的C#脚本,命名为TestRenderImage.cs。
  3. 创建一个新的Shader和Material,命名为ImageEffect。
  4. 创建一个球体,并把新材质赋给它。这个新的材质可以使用任何Shader,这里我们使用一个简单的红色高光反射材质,Specular Material。
最后,你的场景大概是这个样子的:



实现


我们总共需要一个脚本和一个Shader。

脚本:负责在编辑中实时更新图像,同时也负责从主摄像机抓取render texture,然后把该texture传递给Shader。

Shader:一旦render texture到达Shader后,我们就在这里面进行逐像素操作。

首先,我们来实现C#脚本。

  1. 为了让我们在Unity非运行时刻,也可以实时编辑和查看画面效果,我们需要在TestRenderImage类的上面声明下面的语句:
    [ExecuteInEditMode]
    public class TestRenderImage : MonoBehaviour {

    解释:ExecuteInEditMode的文档在这里。通常,一个脚本仅会在play模式下运行。而添加了这个声明后,我们的脚本就可以进行一些回调函数,即使Unity并不是在play模式下。而我们常见的一些回调函数的回调方式也有所不同:
    Update:在scene发生变化时被调用
    OnGUI:在Game视图接受到Event时被调用
    OnRenderImage:在Scene视图或Game视图重绘时被调用

  2. 打开TestRenderImage.cs脚本。首先我们添加一些新的变量:
    public class TestRenderImage : MonoBehaviour {
    
    	#region Variables
    	public Shader curShader;
    	public float grayScaleAmount = 1.0f;
    	private Material curMaterial;
    	#endregion

    解释:这里面的#region没有实际作用,仅仅是方面coder阅读源码~

  3. 因为我们的画面特效要使用Shader来执行对画面图像的像素操作,所以我们需要创建一个材质来运行Shader。如果没有材质,我们就不可以访问Shader的属性。因此,我们在C#中创建一个属性来检查是否有这样一个材质,如果没有就创建一个。
    	#region Properties
    	public Material material {
    		get {
    			if (curMaterial == null) {
    				curMaterial = new Material(curShader);
    				curMaterial.hideFlags = HideFlags.HideAndDontSave;
    			}
    			return curMaterial;
    		}
    	}
    	#endregion
  4. 现在,我们需要建立一些检查,来看看当前的游戏平台是否支持画面特效。如果不支持,我们在脚本的一开始就disable它:
    	// Use this for initialization
    	void Start () {
    		if (SystemInfo.supportsImageEffects == false) {
    			enabled = false;
    			return;
    		}
    
    		if (curShader != null && curShader.isSupported == false) {
    			enabled = false;
    		}
    	}
  5. 为了真正从Unity渲染器中抓取被渲染过的图像,我们需要使用Unity内置的OnRenderImage函数。下面的代码允许我们访问当前被渲染的图像:
    	void OnRenderImage (RenderTexture sourceTexture, RenderTexture destTexture){
    		if (curShader != null) {
    			material.SetFloat("_LuminosityAmount", grayScaleAmount);
    
    			Graphics.Blit(sourceTexture, destTexture, material);
    		} else {
    			Graphics.Blit(sourceTexture, destTexture);
    		}
    	}

    解释:一旦通过上述的各种检查,我们就需要调用内置的OnRenderImage函数来实现画面特效。这个函数负责从Unity渲染器中抓取当前的render texture,然后使用Graphics.Blit()函数再传递给Shader(通过sourceTexture参数),然后再返回一个处理后的图像再次传递回给Unity渲染器(通过destTexture参数)。这两个行数互相搭配是处理画面特效的很常见的方法。你可以在下面的连接中找到这两个函数更详细的信息:
    OnRenderImage:该摄像机上的任何脚本都可以收到这个回调(意味着你必须把它附到一个Camera上)。允许你修改最后的Render Texture。
    Graphics.Blit:sourceTexture会成为material的_MainTex。

  6. 我们的画面效果需要一个名为的变量,它是用于控制最终屏幕效果的灰度值的。因此,我们需要保证这个值的范围在0到1,0表示没有任何灰度效果,1表示完全灰度化。我们在Update函数里执行这个操作:
    	// Update is called once per frame
    	void Update () {
    		grayScaleAmount = Mathf.Clamp(grayScaleAmount, 0.0f, 1.0f);
    	}
  7. 最后,由于我们在一开始创建了一个虚拟材质,我们需要在脚本被disable时,销毁该对象:
    	void OnDisable () {
    		if (curMaterial != null) {
    			DestroyImmediate(curMaterial);
    		}
    	}
完整的TestRenderImage.cs代码如下:
using UnityEngine;
using System.Collections;

[ExecuteInEditMode]
public class TestRenderImage : MonoBehaviour {

	#region Variables
	public Shader curShader;
	public float grayScaleAmount = 1.0f;
	private Material curMaterial;
	#endregion

	#region Properties
	public Material material {
		get {
			if (curMaterial == null) {
				curMaterial = new Material(curShader);
				curMaterial.hideFlags = HideFlags.HideAndDontSave;
			}
			return curMaterial;
		}
	}
	#endregion

	// Use this for initialization
	void Start () {
		if (SystemInfo.supportsImageEffects == false) {
			enabled = false;
			return;
		}

		if (curShader != null && curShader.isSupported == false) {
			enabled = false;
		}
	}

	void OnRenderImage (RenderTexture sourceTexture, RenderTexture destTexture){
		if (curShader != null) {
			material.SetFloat("_LuminosityAmount", grayScaleAmount);

			Graphics.Blit(sourceTexture, destTexture, material);
		} else {
			Graphics.Blit(sourceTexture, destTexture);
		}
	}

	// Update is called once per frame
	void Update () {
		grayScaleAmount = Mathf.Clamp(grayScaleAmount, 0.0f, 1.0f);
	}

	void OnDisable () {
		if (curMaterial != null) {
			DestroyImmediate(curMaterial);
		}
	}
}


现在,我们可以把该脚本赋给当前的主摄像机。你将会看到面板上出现一个grayScaleAmount值以及一个为Shader赋值的区域。现在运行的话,你不会看到任何变化,我们还差一个Shader啦~

继续Shader的编写。
  1. 首先还是需要一些新的属性:
    	Properties {
    		_MainTex ("Base (RGB)", 2D) = "white" {}
    		_LuminosityAmount ("GrayScale Amount", Range(0.0, 1.0)) = 1.0
    	}

    解释:之前提到,通过Graphics.Blit()函数,我们可以把抓取获得的Render Texture作为该材质的_MainTex属性传递给Shader。

  2. 这次的Shader需要利用纯正的Cg Shader代码,而不是Unity内置的Surface Shader。这会使得我们更加优化画面特效,因为我们仅仅需要去计算render texture的像素。因此,我们创建一个新的pass,并使用一些新的#pragma声明:
    	SubShader {
    		Pass {
    			CGPROGRAM
    			#pragma vertex vert_img
    			#pragma fragment frag
    
    			#include "UnityCG.cginc"

    解释:这涉及到了Vertex&Fragment Shader的知识。呜,后面补一篇入门级文章好了。这里简单解释一下。Vertex&Fragment Shader如它的名字一样,需要我们实现两个函数:vertex和fragment。vertex函数负责把模型顶点位置转换到摄像机的透视坐标系中,以及处理模型各顶点对应的纹理坐标等。fragment则负责输出最后屏幕每个像素的颜色值。这里,第一个#pragma指明我们使用名为vet_img的vertex函数,这个函数Unity为我们写好了,在UnityCG.cginc里,它就是完成了两个最简单的计算,计算顶点对应的透视坐标以及纹理坐标。第二个#pragma指明我们使用名为frag的fragment函数,这是在下面的步骤里实现的。

  3. 为了访问新的属性,我们需要在CGPROGRAM里创建对应的变量:
    			uniform sampler2D _MainTex;
    			fixed _LuminosityAmount;
  4. 最后,我们仅仅需要编写自己的像素函数,也就是这里的frag()函数。这是画面特效中真正改变画面像素值的地方。这个函数将会处理render texture的每个像素,然后向TestRenderImage.cs返回一个新的图像:
    			fixed4 frag(v2f_img i) : COLOR
    			{
    				//Get the colors from the RenderTexture and the uv's
    				//from the v2f_img struct
    				fixed4 renderTex = tex2D(_MainTex, i.uv);
    
    				//Apply the Luminosity values to our render texture
    				float luminosity = 0.299 * renderTex.r + 0.587 * renderTex.g + 0.114 * renderTex.b;
    				fixed4 finalColor = lerp(renderTex, luminosity, _LuminosityAmount);
    
    				return finalColor;
    			}
完整的ImageEffect.shader代码如下:
Shader "Custom/ImageEffect" {
	Properties {
		_MainTex ("Base (RGB)", 2D) = "white" {}
		_LuminosityAmount ("GrayScale Amount", Range(0.0, 1.0)) = 1.0
	}
	SubShader {
		Pass {
			CGPROGRAM
			#pragma vertex vert_img
			#pragma fragment frag

			#include "UnityCG.cginc"

			uniform sampler2D _MainTex;
			fixed _LuminosityAmount;

			fixed4 frag(v2f_img i) : COLOR
			{
				//Get the colors from the RenderTexture and the uv's
				//from the v2f_img struct
				fixed4 renderTex = tex2D(_MainTex, i.uv);

				//Apply the Luminosity values to our render texture
				float luminosity = 0.299 * renderTex.r + 0.587 * renderTex.g + 0.114 * renderTex.b;
				fixed4 finalColor = lerp(renderTex, luminosity, _LuminosityAmount);

				return finalColor;
			}

			ENDCG
		}
	}
	FallBack "Diffuse"
}


保存,返回Unity查看。把上述Shader赋给TestRenderImage.cs中的Shader变量。此时,我们改变grayScaleAmount的值就会发现游戏画面的灰度发生了变化(从左到右灰度值分别是0.0,0.5,1.0):

    

上面的过程展示了我们如何使用一种方便的方法检验画面特效Shader。下面,我们来更深入地了解这其中render texture到底发生了什么变化,以及从头到尾它们到底是怎么被处理的。

解释

画面特效是顺序处理的,这就像Photoshop中的layers。如果你有多个屏幕特效,你可以按顺序添加给该Camera,那么它们就会按照这个顺序被处理。

上述的过程是被简化过的,但通过这些我们可以看出画面特效的核心是如何工作的。最后,我们总结上述使用Render Texture实现画面特效的核心过程:

  1. 在脚本中检查当前平台对特效的支持;
  2. 通过OnRenderImage()函数抓取render texture,再通过Graphics.Blit()函数传递给虚拟材质中的Shader进行后处理;
  3. Shader的_MainTex即为接收到的render texture,在frag函数里对图像进行逐像素处理后再返回给OnRenderImage函数,得到最后的屏幕画面。

【Unity Shaders】使用Unity Render Textures实现画面特效——建立画面特效脚本系统的更多相关文章

  1. 【Unity Shaders】Unity里的雾效模拟

    写在前面 熟悉Unity的都知道,Unity可以进行基本的雾效模拟.所谓雾效,就是在远离我们视角的方向上,物体看起来像被蒙上了某种颜色(通常是灰色).这种技术的实现实际上非常简单,就是根据物体距离摄像 ...

  2. 【Unity Shaders】使用Unity Render Textures实现画面特效——画面特效中的亮度、饱和度和对照度

    本系列主要參考<Unity Shaders and Effects Cookbook>一书(感谢原书作者),同一时候会加上一点个人理解或拓展. 这里是本书全部的插图. 这里是本书所需的代码 ...

  3. 【Unity Shaders】游戏性和画面特效——创建一个夜视效果的画面特效

    本系列主要参考<Unity Shaders and Effects Cookbook>一书(感谢原书作者),同时会加上一点个人理解或拓展. 这里是本书所有的插图.这里是本书所需的代码和资源 ...

  4. 【Unity Shaders】游戏性和画面特效——创建一个老电影式的画面特效

    本系列主要参考<Unity Shaders and Effects Cookbook>一书(感谢原书作者),同时会加上一点个人理解或拓展. 这里是本书所有的插图.这里是本书所需的代码和资源 ...

  5. 【Unity Shaders】Using Textures for Effects —— 实现Photoshop的色阶效果

    本系列主要参考<Unity Shaders and Effects Cookbook>一书(感谢原书作者),同时会加上一点个人理解或拓展. 这里是本书所有的插图.这里是本书所需的代码和资源 ...

  6. 【Unity Shaders】Using Textures for Effects——打包和混合textures

    本系列主要参考<Unity Shaders and Effects Cookbook>一书(感谢原书作者),同时会加上一点个人理解或拓展. 这里是本书所有的插图.这里是本书所需的代码和资源 ...

  7. 【Unity Shaders】Using Textures for Effects——让sprite sheets动起来

    本系列主要参考<Unity Shaders and Effects Cookbook>一书(感谢原书作者),同时会加上一点个人理解或拓展. 这里是本书所有的插图.这里是本书所需的代码和资源 ...

  8. 【Unity Shaders】Using Textures for Effects——通过修改UV坐标来滚动textures

    本系列主要参考<Unity Shaders and Effects Cookbook>一书(感谢原书作者),同时会加上一点个人理解或拓展. 这里是本书所有的插图.这里是本书所需的代码和资源 ...

  9. 【Unity Shaders】Using Textures for Effects介绍

    本系列主要参考<Unity Shaders and Effects Cookbook>一书(感谢原书作者),同时会加上一点个人理解或拓展. 这里是本书所有的插图.这里是本书所需的代码和资源 ...

随机推荐

  1. redis 的使用 ( list列表类型操作)

    list 数据类型 列表类型 list 类型是一个双向操作 从链表的头部或者尾部添加删除元素 list 既可以用作栈 也可以用作队列 list 链表的类型应用场合: 获取最新的 10 个用户的信息 s ...

  2. C++之路进阶——bzoj3876(支线剧情)

    F.A.Qs Home Discuss ProblemSet Status Ranklist Contest ModifyUser  hyxzc Logout 捐赠本站 Notice:由于本OJ建立在 ...

  3. In_interrupt( ) 和In_irq( )【转】

    转自:http://blog.csdn.net/do2jiang/article/details/5486888 in_interrupt() 是判断当前进程是否处于中断上下文,这个中断上下文包括底半 ...

  4. Project Euler 91:Right triangles with integer coordinates 格点直角三角形

    Right triangles with integer coordinates The points P (x1, y1) and Q (x2, y2) are plotted at integer ...

  5. angular细节整理

    记录angularjs中比较容易忽视的问题 1.关于动态生成ui-sref的问题 ui-route中ui-sref中的路径无法动态生成的,如果要实现动态生成ui-sref路径,可以使用$state.g ...

  6. linux内核Makefile整体分析

    转自:http://www.cnblogs.com/amanlikethis/p/3675486.html <请阅读原文> 一.概述 1.本文的意义 众多的资料(<嵌入式Linux应 ...

  7. Python3 的注释

    单行注释 # 这是一个注释 print("Hello, World!") 多行注释 1:3个单引号 ''' 这是多行注释,用三个单引号 这是多行注释,用三个单引号 这是多行注释,用 ...

  8. 论文笔记(5):Fully Convolutional Multi-Class Multiple Instance Learning

    这篇论文主要介绍了如何使用图片级标注对像素级分割任务进行训练.想法很简单却达到了比较好的效果.文中所提到的loss比较有启发性. 大体思路: 首先同FCN一样,这个网络只有8层(5层VGG,3层全卷积 ...

  9. SignalR Self Host+MVC等多端消息推送服务(1)

    一.概述 由于项目需要,最近公司项目里有个模块功能,需要使用到即时获得审批通知:原本的设计方案是使用ajax对服务器进行定时轮询查询,刚刚开始数据量和使用量不大的时候还好,后来使用量的增加和系统中各种 ...

  10. jquery 跨域请求数据问题

    昨天参加了一个前端的面试,被问到一个跨域请求数据问题,我们之前一直用的是apicloud的api进行请求的,跨域是被apicloud封装起来的,也就没有注意跨域请求数据的问题.当被问到用jquery跨 ...