CNN学习笔记:池化层

池化

  池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样。有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。直觉上,这种机制能够有效地原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合。通常来说,CNN的卷积层之间都会周期性地插入池化层。

  池化层通常会分别作用于每个输入的特征并减小其大小。当前最常用形式的池化层是每隔2个元素从图像划分出2*2的区块,然后对每个区块中的4个数取最大值。这将会减少75%的数据量。

  

池化的作用

  池化操作后的结果相比其输入缩小了。池化层的引入是仿照人的视觉系统对视觉输入对象进行降维和抽象。在卷积神经网络过去的工作中,研究者普遍认为池化层有如下三个功效:

  1.特征不变形:池化操作是模型更加关注是否存在某些特征而不是特征具体的位置。

  2.特征降维:池化相当于在空间范围内做了维度约减,从而使模型可以抽取更加广范围的特征。同时减小了下一层的输入大小,进而减少计算量和参数个数。

  3.在一定程度上防止过拟合,更方便优化。

CNN学习笔记:池化层的更多相关文章

  1. tensorflow 1.0 学习:池化层(pooling)和全连接层(dense)

    池化层定义在 tensorflow/python/layers/pooling.py. 有最大值池化和均值池化. 1.tf.layers.max_pooling2d max_pooling2d( in ...

  2. CNN中的池化层的理解和实例

    池化操作是利用一个矩阵窗口在输入张量上进行扫描,并且每个窗口中的值通过取最大.取平均或其它的一些操作来减少元素个数.池化窗口由ksize来指定,根据strides的长度来决定移动步长.如果stride ...

  3. 学习笔记TF014:卷积层、激活函数、池化层、归一化层、高级层

    CNN神经网络架构至少包含一个卷积层 (tf.nn.conv2d).单层CNN检测边缘.图像识别分类,使用不同层类型支持卷积层,减少过拟合,加速训练过程,降低内存占用率. TensorFlow加速所有 ...

  4. 【深度学习篇】--神经网络中的池化层和CNN架构模型

    一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输 ...

  5. CNN学习笔记:全连接层

    CNN学习笔记:全连接层 全连接层 全连接层在整个网络卷积神经网络中起到“分类器”的作用.如果说卷积层.池化层和激活函数等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的特征表示映射到样 ...

  6. CNN-卷积层和池化层学习

    卷积神经网络(CNN)由输入层.卷积层.激活函数.池化层.全连接层组成,即INPUT-CONV-RELU-POOL-FC (1)卷积层:用它来进行特征提取,如下: 输入图像是32*32*3,3是它的深 ...

  7. [DeeplearningAI笔记]卷积神经网络1.9-1.11池化层/卷积神经网络示例/优点

    4.1卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.9池化层 优点 池化层可以缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性. 池化层操作 池化操作与卷积操作类似 ...

  8. 基于深度学习和迁移学习的识花实践——利用 VGG16 的深度网络结构中的五轮卷积网络层和池化层,对每张图片得到一个 4096 维的特征向量,然后我们直接用这个特征向量替代原来的图片,再加若干层全连接的神经网络,对花朵数据集进行训练(属于模型迁移)

    基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 Tens ...

  9. ubuntu之路——day17.3 简单的CNN和CNN的常用结构池化层

    来看上图的简单CNN: 从39x39x3的原始图像 不填充且步长为1的情况下经过3x3的10个filter卷积后 得到了 37x37x10的数据 不填充且步长为2的情况下经过5x5的20个filter ...

随机推荐

  1. Pycharm注册码

    name : newasp===== LICENSE BEGIN =====09086-1204201000001EBwqd8wkmP2FM34Z05iXch1AkKI0bAod8jkIffywp2W ...

  2. 手把手教你使用UICollectionView写公司的项目

    在很多app中都有这样通用的页面,一直没有机会使用UICollectionView,只是简单的看过他的使用方法.今天公司美工出图,使用了他,并且遇到了好多的坑.记录一下过程,不确定使用的方法是不是最优 ...

  3. numpy 札记

    transpose 在处理caffe读入的图片数据时,需要将原始图片的数据 H*W*3(height*width*RGB) 转换为 3*H*W(RGB*heigth*width) 需要用到numpy的 ...

  4. PHP 字符串处理 总结

    PHP 字符串处理 PHP 字符串处理 PHP 的字符串处理功能非常强大,主要包括: 字符串输出 echo():输出一个或多个字符串 print():输出一个字符串 printf():输出格式化字符串 ...

  5. QT自绘标题和边框

    在QT中如果想要自绘标题和边框,一般步骤是: 1) 在创建窗口前设置Qt::FramelessWindowHint标志,设置该标志后会创建一个无标题.无边框的窗口. 2)在客户区域的顶部创建一个自绘标 ...

  6. Lua + Redis 解决高并发

    一.业务背景 优惠券业务主要提供用户领券和消券的功能:领取优惠券的动作由用户直接发起,由于资源有限,我们必须对用户的领取动作进行一些常规约束. 约束1(优惠券维度): 券的最大数量 max: 约束2( ...

  7. Day1 基础知识

    数据类型,字符编码 二进制: 定义:二进制数据是用0和1两个数码来表示的数.它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”.当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是 ...

  8. 关于histry的pushstate 和 popstate事件的应用

    这篇文章是基础:http://www.cnblogs.com/kaituorensheng/p/3776527.html: histry的单页面应用有两个写法:哈希值和?: 哈希值例子: 实现效果:点 ...

  9. Linux命令速查手册

    Others make 通过外部编译器的,比如linux中的gcc集来编译源码 获取Makefile文件的命令触发编译 curl -X GET/POST -I 获取head curl有cache 查看 ...

  10. Java注解的基本概念和原理及其简单实用

      一.注解的基本概念和原理及其简单实用 注解(Annotation)提供了一种安全的类似注释的机制,为我们在代码中添加信息提供了一种形式化得方法,使我们可以在稍后某个时刻方便的使用这些数据(通过解析 ...