CNN学习笔记:池化层

池化

  池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样。有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。直觉上,这种机制能够有效地原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合。通常来说,CNN的卷积层之间都会周期性地插入池化层。

  池化层通常会分别作用于每个输入的特征并减小其大小。当前最常用形式的池化层是每隔2个元素从图像划分出2*2的区块,然后对每个区块中的4个数取最大值。这将会减少75%的数据量。

  

池化的作用

  池化操作后的结果相比其输入缩小了。池化层的引入是仿照人的视觉系统对视觉输入对象进行降维和抽象。在卷积神经网络过去的工作中,研究者普遍认为池化层有如下三个功效:

  1.特征不变形:池化操作是模型更加关注是否存在某些特征而不是特征具体的位置。

  2.特征降维:池化相当于在空间范围内做了维度约减,从而使模型可以抽取更加广范围的特征。同时减小了下一层的输入大小,进而减少计算量和参数个数。

  3.在一定程度上防止过拟合,更方便优化。

CNN学习笔记:池化层的更多相关文章

  1. tensorflow 1.0 学习:池化层(pooling)和全连接层(dense)

    池化层定义在 tensorflow/python/layers/pooling.py. 有最大值池化和均值池化. 1.tf.layers.max_pooling2d max_pooling2d( in ...

  2. CNN中的池化层的理解和实例

    池化操作是利用一个矩阵窗口在输入张量上进行扫描,并且每个窗口中的值通过取最大.取平均或其它的一些操作来减少元素个数.池化窗口由ksize来指定,根据strides的长度来决定移动步长.如果stride ...

  3. 学习笔记TF014:卷积层、激活函数、池化层、归一化层、高级层

    CNN神经网络架构至少包含一个卷积层 (tf.nn.conv2d).单层CNN检测边缘.图像识别分类,使用不同层类型支持卷积层,减少过拟合,加速训练过程,降低内存占用率. TensorFlow加速所有 ...

  4. 【深度学习篇】--神经网络中的池化层和CNN架构模型

    一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输 ...

  5. CNN学习笔记:全连接层

    CNN学习笔记:全连接层 全连接层 全连接层在整个网络卷积神经网络中起到“分类器”的作用.如果说卷积层.池化层和激活函数等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的特征表示映射到样 ...

  6. CNN-卷积层和池化层学习

    卷积神经网络(CNN)由输入层.卷积层.激活函数.池化层.全连接层组成,即INPUT-CONV-RELU-POOL-FC (1)卷积层:用它来进行特征提取,如下: 输入图像是32*32*3,3是它的深 ...

  7. [DeeplearningAI笔记]卷积神经网络1.9-1.11池化层/卷积神经网络示例/优点

    4.1卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.9池化层 优点 池化层可以缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性. 池化层操作 池化操作与卷积操作类似 ...

  8. 基于深度学习和迁移学习的识花实践——利用 VGG16 的深度网络结构中的五轮卷积网络层和池化层,对每张图片得到一个 4096 维的特征向量,然后我们直接用这个特征向量替代原来的图片,再加若干层全连接的神经网络,对花朵数据集进行训练(属于模型迁移)

    基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 Tens ...

  9. ubuntu之路——day17.3 简单的CNN和CNN的常用结构池化层

    来看上图的简单CNN: 从39x39x3的原始图像 不填充且步长为1的情况下经过3x3的10个filter卷积后 得到了 37x37x10的数据 不填充且步长为2的情况下经过5x5的20个filter ...

随机推荐

  1. 几个功能强大的系统源码(机票分销、机票预订、OA、手机充值、wifi营销、网络超市、体检平台)

    1.机票分销.机票预订系统源码 2.OA系统源码 3.手机在线充值系统源码 4.wifi营销系统源码 5.网络超市系统源码 6.在线体检平台系统源码 7.违章查询与缴费系统源码 需要的同学请联系QQ: ...

  2. ecslipe cdt lib link

    项目属性-> settings -> mingw c linker 1.libs search 填写lib路径 2.lib 填写文件名,不要后缀

  3. pig中变量

    pig中的变量都是找到$变量然后替换,有点像宏,完全就是替换,看如下例子 %default m 'you';b = load 'a' as (a:chararray);c = foreach b ge ...

  4. 设置IIS7文件上传的最大大小 maxAllowedContentLength,maxRequestLength

    当上传一个超过30M的文件时,服务器会重定向至404.13页面,报错如下: HTTP Error 404.13 - Not Found The request filtering module is ...

  5. Wireless Network(POJ 2236)

    Wireless Network Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 20724   Accepted: 871 ...

  6. 如何用Ettercap实现“中间人攻击”(附下载链接)

    什么是“中间人攻击”? 中间人攻击(Man-in-the-Middle Attack,简称“MiTM攻击”)是一种“间接”的入侵攻击,这种攻击模式是通过各种技术手段将受入侵者控制的一台计算机虚拟放置在 ...

  7. LVS负载均衡原理

    一.LVS基本原理概述 LB集群的实现,LB即负载均衡集群 硬件:F5 BIG-IP,Citrix NetScaler,A10,Array,Redware 软件:Lvs,nginx,haproxy,a ...

  8. vue中mint-ui的filed的与blur事件结合实现检查用户输入是否正确

    标题mint-ui的filed与blur事件验证用户输入格式是否正确说明:本人前端菜鸟,只是想借个地方做个笔记,为了以后查阅时比较方便.如有大神有什么建议的地方,欢迎提出来. 1.不得不说,mint- ...

  9. Spring Cloud Gateway Ribbon 自定义负载均衡

    在微服务开发中,使用Spring Cloud Gateway做为服务的网关,网关后面启动N个业务服务.但是有这样一个需求,同一个用户的操作,有时候需要保证顺序性,如果使用默认负载均衡策略,同一个用户的 ...

  10. 第77节:Java中的事务和数据库连接池和DBUtiles

    第77节:Java中的事务和数据库连接池和DBUtiles 前言 看哭你,字数:8803,承蒙关照,谢谢朋友点赞! 事务 Transaction事务,什么是事务,事务是包含一组操作,这组操作里面包含许 ...