Description

给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列
{Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L,R) = (R-L+1) ∗ gcd (Al..Ar)。 
JYY 希望找出权值最大的子序列。

Input

输入一行包含一个正整数 N。
接下来一行,包含 N个正整数,表示序列Ai
1 < =  Ai < =  10^12, 1 < =  N < =  100,000

Output

输出文件包含一行一个正整数,表示权值最大的子序列的权值。

Sample Input

5
30 60 20 20 20

Sample Output

80
//最佳子序列为最后 4 个元素组成的子序列。
 
固定端点的序列一共只有O(logn)种不同的gcd,所以我们枚举右端点,维护不同gcd的左端点集合,右端点改变时重新扫一遍合并一下相同的gcd区间即可。
时间复杂度为O(Nlog^2N)。
#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
const int BufferSize=1<<16;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
	if(head==tail) {
		int l=fread(buffer,1,BufferSize,stdin);
		tail=(head=buffer)+l;
	}
	return *head++;
}
typedef long long ll;
inline ll read() {
    ll x=0,f=1;char c=Getchar();
    for(;!isdigit(c);c=Getchar()) if(c=='-') f=-1;
    for(;isdigit(c);c=Getchar()) x=x*10+c-'0';
    return x*f;
}
const int maxn=100010;
ll A[maxn],B[maxn],ans;
ll gcd(ll a,ll b) {return !b?a:gcd(b,a%b);}
int n,S[maxn];
int main() {
	n=read();int top=0;
	rep(i,1,n) A[i]=read();
	rep(i,1,n) {
		S[++top]=i;B[top]=A[i];
		dwn(j,top-1,1) {
			B[j]=gcd(B[j],B[j+1]);
			if(B[j]==B[j+1]) {
				rep(k,j+1,top-1) S[k]=S[k+1],B[k]=B[k+1];
				top--;
			}
		}
		rep(j,1,top) ans=max(ans,B[j]*(i-S[j]+1));
	}
	printf("%lld\n",ans);
	return 0;
}

  

BZOJ4488: [Jsoi2015]最大公约数的更多相关文章

  1. BZOJ4488 JSOI2015最大公约数

    显然若右端点确定,gcd最多变化log次.容易想到对每一种gcd二分找最远端点,但这样就变成log^3了.注意到右端点右移时,只会造成一些gcd区间的合并,原本gcd相同的区间不可能分裂.由于区间只有 ...

  2. bzoj 4488 [Jsoi2015]最大公约数 结论+暴力

    [Jsoi2015]最大公约数 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 302  Solved: 169[Submit][Status][Dis ...

  3. BZOJ-4488:最大公约数(GCD)

    给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列{Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L,R) = (R-L+1) ...

  4. [BZOJ 4488][Jsoi2015]最大公约数

    传送门 不知谁说过一句名句,我们要学会复杂度分析 #include <bits/stdc++.h> using namespace std; #define rep(i,a,b) for( ...

  5. [暑假的bzoj刷水记录]

    (这篇我就不信有网站来扣) 这个暑假打算刷刷题啥的 但是写博客好累啊  堆一起算了 隔一段更新一下.  7月27号之前刷的的就不写了 , 写的累 代码不贴了,可以找我要啊.. 2017.8.27upd ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  7. C语言辗转相除法求2个数的最小公约数

    辗转相除法最大的用途就是用来求两个数的最大公约数. 用(a,b)来表示a和b的最大公约数. 有定理: 已知a,b,c为正整数,若a除以b余c,则(a,b)=(b,c). (证明过程请参考其它资料) 例 ...

  8. 求两个数字的最大公约数-Python实现,三种方法效率比较,包含质数打印质数的方法

    今天面试,遇到面试官询求最大公约数.小学就学过的奥数题,居然忘了!只好回答分解质因数再求解! 回来果断复习下,常用方法辗转相除法和更相减损法,小学奥数都学过,很简单,就不细说了,忘了的话可以百度:ht ...

  9. 求N个数的最大公约数和最小公倍数(转)

    除了分解质因数,还有另一种适用于求几个较小数的最大公约数.最小公倍数的方法 下面是数学证明及算法实现 令[a1,a2,..,an] 表示a1,a2,..,an的最小公倍数,(a1,a2,..,an)表 ...

随机推荐

  1. [WPF系列]-DataBinding(数据绑定) 自定义Binding

    自定义Binding A base class for custom WPF binding markup extensions BindingDecoratorBase Code: public c ...

  2. BootStrap学习(2)

    使用Bootstrap添加代码框 可先看:简介.引入.包下载等:http://www.cnblogs.com/0201zcr/p/4900062.html Bootstrap 允许您以两种方式显示代码 ...

  3. TypeScript的全部资料,以后都放这儿了

    很早之前就听说TypeScript了(以下简称TS),但总是用难以抽出时间给自己找到这个冠冕堂皇的理由.最近又心血来潮,打算写TS的博客了,毕竟TS核心开发者也是C#之父,像我这么热爱C#的人,怎么可 ...

  4. android: Android Notification

    Notification即通知,用于在通知栏显示提示信息. 在较新的版本中(API level  > 11),Notification类中的一些方法被Android声明deprecated(弃用 ...

  5. centos使用网易163yum源

    CentOS系统自带的更新源的速度实在是慢,为了让CentOS6使用速度更快的YUM更新源,可以选择163(网易)的更新源. 1.下载repo文件 wget http://mirrors.163.co ...

  6. 瑞丽的SQL-基于窗体的排名计算

    在SQL Server中,窗体被定义为用户指定的一组行. 之所以要提出窗体这个概念,由于这种基于窗体或分区的又一次计算在实际工作应用范围比較广泛.比如.假设我们要对每一个班级中的学生按成绩进行排序,在 ...

  7. 《转》在win7,boa-constructor 0.6.1 的palette面板中没有控件图标的解决方法

    原地址:http://blog.csdn.net/rickleo/article/details/6532595 在win7-64bit环境下,boa-constructor 0.6.1 的palet ...

  8. 将HTML导出生成word文档

    前言: 项目开发中遇到了需要将HTML页面的内容导出为一个word文档,所以有了这边随笔. 当然,项目开发又时间有点紧迫,第一时间想到的是用插件,所以百度了下.下面就介绍两个导出word文档的方法. ...

  9. 数据库 --&gt; SQL Server 和 Oracle 以及 MySQL 区别

    SQL Server 和 Oracle 以及 MySQL 区别 三者是目前市场占有率最高(依安装量而非收入)的关系数据库,而且很有代表性.排行第四的DB2(属IBM公司),与Oracle的定位和架构非 ...

  10. python打造一个分析网站SQL注入的脚本

    前言: 昨天晚上其实就已经写完代码.只不过向FB投稿了,打算延迟一晚上在写博客 所有才到今天早上写.好了,接下来进入正题. 思路: 1.从网站源码中爬取那些类适于:http://xxx.com/xx. ...