题目链接

题意

给定 \(x,p,k\),求大于 \(x\) 的第 \(k\) 个与 \(p\) 互质的数。

思路

参考 蒟蒻JHY.

二分答案 \(y\),再去 \(check\) 在 \([x,y]\) 区间中是否有 \(k\) 个与 \(p\) 互质的数。

\(check\) 采用容斥,将 \(p\) 质因数分解,用这些质数组合成的数在 \([1,y]\) 范围内 容斥

Code

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int f[210], a[10], b[210], cnt;
void init(int p) {
cnt = 0;
for (int i = 2; i * i <= p; ++i) {
if (!(p % i)) {
a[cnt++] = i;
while (!(p % i)) p /= i;
}
}
if (p != 1) a[cnt++] = p;
for (int i = 1; i < (1<<cnt); ++i) {
b[i] = 1;
for (int j = 0; j < cnt; ++j) if (i & (1<<j)) b[i] *= a[j];
}
}
int get(int x) {
int ret = 0;
for (int i = 1; i < (1<<cnt); ++i) ret += f[i] * (x/b[i]);
return x-ret;
}
void work() {
int x, p, k, ans;
scanf("%d%d%d", &x,&p,&k);
init(p);
int l = x+1, r = 1000000000, num = get(x);
while (l<=r) {
int mid = l+r>>1;
if (get(mid)-num >= k) ans = mid, r = mid-1;
else l = mid+1;
}
printf("%d\n", ans);
}
int main() {
f[0] = -1;
for (int i = 1; i < 128; ++i) f[i] = -f[i^(i&-i)];
int T;
scanf("%d", &T);
while (T--) work();
return 0;
}

Codeforces 920G List Of Integers 二分 + 容斥的更多相关文章

  1. codeforces B. Friends and Presents(二分+容斥)

    题意:从1....v这些数中找到c1个数不能被x整除,c2个数不能被y整除! 并且这c1个数和这c2个数没有相同的!给定c1, c2, x, y, 求最小的v的值! 思路: 二分+容斥,二分找到v的值 ...

  2. BZOJ 2440 [中山市选2011]完全平方数 二分+容斥

    直接筛$\mu$?+爆算?再不行筛素数再筛个数?但不就是$\mu^2$的前缀和吗? 放...怕不是数论白学了$qwq$ 思路:二分+容斥 提交:两次(康了题解) 题解: 首先答案满足二分性质(递增), ...

  3. Codeforces 920G(二分+容斥)

    题意: 定义F(x,p)表示的是一个数列{y},其中gcd(y,p)=1且y>x 给出x,p,k,求出F(x,p)的第k项 x,p,k<=10^6 分析: 很容易想到先二分,再做差 然后问 ...

  4. Codeforces 920G - List Of Integers

    920G - List Of Integers 思路:容斥+二分 代码: #include<bits/stdc++.h> using namespace std; #define ll l ...

  5. YYHS-分数(二分+容斥)

    题目描述 KJDH是个十分善于探索的孩子,有一天他把分子分母小于等于n的最简分数列在了纸上,他想找到这些分数里第k小的数,这对于KJDH来说当然是非常轻易,但是KJDH最近多了很多妹子,他还要去找妹子 ...

  6. 【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数

    Description 求第k个没有完全平方因子的数,k<=1e9. Solution 这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数. 然而k太大数组开不下来是吧,于是这么处理. 二分 ...

  7. 第k个互质数(二分 + 容斥)

    描述两个数的a,b的gcd为1,即a,b互质,现在给你一个数m,你知道与它互质的第k个数是多少吗?与m互质的数按照升序排列. 输入 输入m ,k (1<=m<=1000000;1<= ...

  8. poj2773(欧基里德算法 或 二分+容斥)

    题目链接:https://vjudge.net/problem/POJ-2773 题意:给定m,k,求与m互质的第k个数. 思路一:利用gcd(a,b)=gcd(b*t+a,b)知道,与m互质的数是以 ...

  9. Codeforces Round 450 D 隔板法+容斥

    题意: Count the number of distinct sequences a1, a2, ..., an (1 ≤ ai) consisting of positive integers ...

随机推荐

  1. 重建Windows 8的图标缓存

    Windows 8的图标缓存路径与Win7不同,重置方法如下: rem 关闭explorer.exe taskkill /f /im explorer.exe attrib -h -i %userpr ...

  2. Alpha版本十天冲刺--Day4

    站立式会议 会议总结 队员 今天完成 遇到的问题 明天要做 感想 鲍亮 解决线程信息传递问题(使用函数回调),Android登录验证接口完善 无 json解析,忘记密码界面验证码获取接口,忘记密码请求 ...

  3. 自制ichartjs饼图

    饼图:2个数据: <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> &l ...

  4. JavaScript高级用法二之内置对象

    综述 本篇的主要内容来自慕课网,内置对象,主要内容如下 1 什么是对象 2 Date 日期对象 3 返回/设置年份方法 4 返回星期方法 5 返回/设置时间方法 6 String 字符串对象 7 返回 ...

  5. mysql update 忘加 where 文件恢复

    前提条件:mysql :data_row_format=rowmysql> show variables like '%image%';+------------------+-------+| ...

  6. pie的绕过方式

    目标程序下载 提取码:qk1y 1.检查程序开启了哪些安全保护机制 pie机制简介 PIE(position-independent executable) 是一个针对代码段.text, 数据段.*d ...

  7. 【Java集合的详细研究8】List,Set,Map用法以及区别

    Collection是最基本的集合接口,一个Collection代表一组Object,即Collection的元素.一些Collection允许相同的元素而另一些不行.一些能排序而另一些不行.Java ...

  8. 关于类型Type

    每一个JC语法节点都含有type属性,因为做为所有JC语法节点的父节点JCTree含有type属性.其继承关系如下图. 下面看一下Type类的定义及重要的属性. public class Type i ...

  9. ADO.NET DataTable的复制(clone)

    using (SqlConnection conn = new SqlConnection("Data Source=.;Initial Catalog=test;Integrated Se ...

  10. Luogu4887 第十四分块(前体)

    sto \(lxl\) orz 考虑莫队,每次移动端点,我们都要询问区间内和当前数字异或有 \(k\) 个 \(1\) 的数字个数 询问 \([l,r]\) 可以再次离线,拆成询问 \([1,l-1] ...