[Jsoi2015]最大公约数

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 302  Solved: 169
[Submit][Status][Discuss]

Description

给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列
{Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L,R) = (R-L+1) ∗ gcd (Al..Ar)。 
JYY 希望找出权值最大的子序列。

Input

输入一行包含一个正整数 N。
接下来一行,包含 N个正整数,表示序列Ai
1 < =  Ai < =  10^12, 1 < =  N < =  100,000

Output

输出文件包含一行一个正整数,表示权值最大的子序列的权值。

Sample Input

5
30 60 20 20 20

Sample Output

80
//最佳子序列为最后 4 个元素组成的子序列。

HINT

 

Source

题解:有一个结论,一个序列的gcd最多只有log个,

因为最多只有log个,所以可以直接暴力,判断包涵当前这个点的公约数,然后统计所有的答案,同样的公约数当然位置越前面越好。

 #include<cstring>
 #include<cstdio>
 #include<algorithm>
 #include<iostream>
 #include<cmath>
 #include<map>

 #define zz map<ll,ll>::iterator
 #define ll long long
 #define N 100007
 #define ll long long
 using namespace std;
 inline ll read()
 {
     ll x=,f=;char ch=getchar();
     ;ch=getchar();}
     )+(x<<)+ch-';ch=getchar();}
     return x*f;
 }

 int n;
 ll a[N],ans;
 map<ll,ll>p1,p2;

 ll gcd(ll a,ll b)
 {
     return b?gcd(b,a%b):a;
 }
 int main()
 {
     n=read();
     ;i<=n;i++)
     {
         a[i]=read(),ans=max(ans,a[i]);
         for (zz it=p1.begin();it!=p1.end();it++)
         {
             ll g=gcd((*it).first,a[i]);
             ans=max(ans,g*((ll)i-(*it).second+1ll));
             if (!p2.count(g)) p2[g]=(*it).second;
             else p2[g]=min(p2[g],(*it).second);
         }
         if (!p2.count(a[i])) p2[a[i]]=i;
         p1=p2;
         p2.clear();
     }
     printf("%lld\n",ans);
 }
 

bzoj 4488 [Jsoi2015]最大公约数 结论+暴力的更多相关文章

  1. [BZOJ 4488][Jsoi2015]最大公约数

    传送门 不知谁说过一句名句,我们要学会复杂度分析 #include <bits/stdc++.h> using namespace std; #define rep(i,a,b) for( ...

  2. BZOJ.4151.[AMPPZ2014]The Cave(结论)

    BZOJ 不是很懂他们为什么都要DFS三次.于是稳拿Rank1 qwq. (三道题两个Rank1一个Rank3效率是不是有点高qwq?) 记以\(1\)为根DFS时每个点的深度是\(dep_i\).对 ...

  3. BZOJ4488: [Jsoi2015]最大公约数

    Description 给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列{Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L,R ...

  4. BZOJ 3339 &amp; 莫队+&quot;所谓的暴力&quot;

    题意: 给一段数字序列,求一段区间内未出现的最小自然数. SOL: 框架显然用莫队.因为它兹瓷离线. 然而在统计上我打了线段树...用&维护的结点...400w的线段树...然后二分查找... ...

  5. Codeforces.1028F.Make Symmetrical(结论 暴力)

    题目链接 \(Description\) \(q\)次操作,每次给定点的坐标\((x,y)\),表示加入一个点\((x,y)\),或删除一个点\((x,y)\),或询问:至少需要在平面中加入多少个点, ...

  6. bzoj 4725 [POI2017]Reprezentacje r&#243;?nicowe 暴力

    [POI2017]Reprezentacje ró?nicowe Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 141  Solved: 67[Sub ...

  7. BZOJ - 4066 KD树 范围计数 暴力重构

    题意:单点更新,大矩阵(\(n*n,n≤10^5\))求和 二维的KD树能使最坏情况不高于\(O(N\sqrt{N})\) 核心在于query时判断当前子树维护的区间是否有交集/当前子节点是否在块中, ...

  8. BZOJ4488 JSOI2015最大公约数

    显然若右端点确定,gcd最多变化log次.容易想到对每一种gcd二分找最远端点,但这样就变成log^3了.注意到右端点右移时,只会造成一些gcd区间的合并,原本gcd相同的区间不可能分裂.由于区间只有 ...

  9. BZOJ 4488/4052 gcd

    思路: 一开始 我是想 对于固定的左端点 从左到右 最多有 log种取值  且单调递减  那不妨倍增预处理+二分GCD在哪变了.. 复杂度O(nlog^2n) gcd最多log种取值.. 好了我们可以 ...

随机推荐

  1. [转]实现文字跑马灯效果,scrolling text from right to left

    <div> <marquee direction="left" behavior="scroll" scrollamount="10 ...

  2. 错误处理--pure specifier can only be specified for functions

    错误处理--pure specifier can only be specified for functions 今天下载了log4cpp的源代码,在VC6下编译时出现错误: ..\..\includ ...

  3. 用Visio画UML用例图

    1.用例图 用例图描述参与者所理解的系统功能.主要元素是用例和参与者. 用例图的4个基本组件:参与者(Actor).用例(Use Case).关系(Relationship)和系统. 下面以银行储蓄系 ...

  4. delphi 功能函数大全-备份用

    function CheckTask(ExeFileName: string): Boolean;constPROCESS_TERMINATE=$0001;varContinueLoop: BOOL; ...

  5. 解决SQL Server 占用80端口

    停用掉下面的服务就可以了:

  6. .class和.getClass()的区别

    使用指定类初始化日志对象,在日志输出的时候,可以打印出日志信息所在类 如: getClass() 返回此 Object 的运行时类. //需要有com.lpx.test.class这个类 Logger ...

  7. deque源码2(deque迭代器、deque的数据结构)

    deque源码1(deque概述.deque中的控制器) deque源码2(deque迭代器.deque的数据结构) deque源码3(deque的构造与内存.ctor.push_back.push_ ...

  8. [pytorch修改]npyio.py 实现在标签中使用两种delimiter分割文件的行

    from __future__ import division, absolute_import, print_function import io import sys import os impo ...

  9. 线路板(PCB)制作流程中英文对照表

    线路板(PCB)流程术语中英文对照流程简介:开料--钻孔--干膜制程--压合--减铜--电镀--塞孔--防焊(绿漆/绿油) --镀金--喷锡--成型--开短路测试--终检--雷射钻孔A. 开料( Cu ...

  10. probing privatePath如何作用于ASP.NET MVC View

    当View上using一些从probing privatePath加载的程序集,运行时会提示无法找到对应程序集. <runtime> <assemblyBinding xmlns=& ...