【数据结构与算法Python版学习笔记】算法分析
什么是算法分析
- 算法是问题解决的通用的分步的指令的聚合
- 算法分析主要就是从计算资源的消耗的角度来评判和比较算法。
计算资源指标
- 存储空间或内存
- 执行时间
影响算法运行时间的其他因素
- 分为最好、最差和平均情况,平均状况体现主流性能
累计求和案例
import time
def sumOFN2(n):
start=time.time()
theSum=0
for i in range(1,n+1):
theSum+=i
end=time.time()
return theSum,end-start
def sumOFN3(n):
start=time.time()
theSum=(n*(n+1))/2
end=time.time()
return theSum,end-start
if __name__ == "__main__":
for i in range(5):
print("sum is %d required %10.7f seconds" % sumOFN2(100000))
print("--------")
for i in range(5):
print("sum is %d required %10.7f seconds" % sumOFN3(100000))
-----------
sum is 5000050000 required 0.1255534 seconds
sum is 5000050000 required 0.1245010 seconds
sum is 5000050000 required 0.1389964 seconds
sum is 5000050000 required 0.1279476 seconds
sum is 5000050000 required 0.1276410 seconds
--------
sum is 5000050000 required 0.0000000 seconds
sum is 5000050000 required 0.0000000 seconds
sum is 5000050000 required 0.0000000 seconds
sum is 5000050000 required 0.0000000 seconds
sum is 5000050000 required 0.0000000 seconds
“大O” 表示法
数量级函数用来描述当规模 n 增加时, T(n)函数中增长最快的部分。
常见大O表示法
变 位 词 检 测
如果一个字符串是另一个字符串的重新排列组合,那么这两个字符串互为变位词。比如, ”heart”与”earth”互为变位词, ”python”与”typhon”也互为变位词。
- 逐字检查法 O(n²)
- 排序比较法 O(nlogn)
- 暴力匹配算法 O(n!)
- 字母计数比较法 O(n)
#变位词判断问题
#逐字检查
def anagramSolution(s1,s2):
alist=list(s2)
pos1=0
stillOK=True
while pos1<len(s1) and stillOK:#循环s1中的每一个字符
pos2=0
found=False
while pos2<len(alist) and not found:
if s1[pos1]==alist[pos2]:
found=True
else:
pos2=pos2+1
if found:
alist[pos2]=None
else:
stillOK=False
pos1=pos1+1
return stillOK
#print(anagramSolution('abcd','dcba'))
#排序解法
def anagramSolution2(s1,s2):
alist1=list(s1)
alist2=list(s2)
alist1.sort()
alist2.sort()
pos=0
matches=True
while pos<len(s1) and matches:
if alist1[pos]==alist2[pos]:
pos=pos+1
else:
matches=False
return matches
print(anagramSolution2('abcd','dcba'))
#计数器解法
def anagramSolution3(s1,s2):
c1=[0]*26
c2=[0]*26
for i in range(len(s1)):
pos=ord(s1[i])-ord('a')#把a-z转化为0-25 ps:感谢m0_47550366的提醒,此处错误已改正
c1[pos]=c1[pos]+1#计数
for i in range(len(s2)):
pos = ord(s2[i]) - ord('a') # 把a-z转化为0-25
c2[pos] = c2[pos] + 1 # 计数
j=0
stillOK=True
while j<26 and stillOK:
if c1[j]==c2[j]:
j=j+1
else:
stillOK=False
return stillOK
print(anagramSolution3('abcd','dcba'))
python数据类型
List 列表
```python
import timeit # 运行时间测量模块
from timeit import Timer
# 循环连接
def test1():
l=[]
for i in range(1000):
l=l+[i]
# append添加
def test2():
l=[]
for i in range(1000):
l.append(i)
# 列表推导式
def test3():
l=[i for i in range(1000)]
# range转列表
def test4():
l=list(range(1000))
if __name__ == "__main__":
t1=Timer("test1()","from __main__ import test1")
print("concat %f second" % t1.timeit(number=1000)) # number指定程序被执行的次数
t2=Timer("test2()","from __main__ import test2")
print("append %f second" % t2.timeit(number=1000))
t3=Timer("test3()","from __main__ import test3")
print("comprehension %f second" % t3.timeit(number=1000))
t4=Timer("test4()","from __main__ import test4")
print("list range %f second" % t4.timeit(number=1000))
-------
concat 1.979591 second
append 0.811599 second
comprehension 0.375291 second
list range 0.024658 second
```
dict 字典
【数据结构与算法Python版学习笔记】算法分析的更多相关文章
- 【数据结构与算法Python版学习笔记】引言
学习来源 北京大学-数据结构与算法Python版 目标 了解计算机科学.程序设计和问题解决的基本概念 计算机科学是对问题本身.问题的解决.以及问题求解过程中得出的解决方案的研究.面对一 个特定问题,计 ...
- 【数据结构与算法Python版学习笔记】查找与排序——散列、散列函数、区块链
散列 Hasing 前言 如果数据项之间是按照大小排好序的话,就可以利用二分查找来降低算法复杂度. 现在我们进一步来构造一个新的数据结构, 能使得查找算法的复杂度降到O(1), 这种概念称为" ...
- 【数据结构与算法Python版学习笔记】基本数据结构——列表 List,链表实现
无序表链表 定义 一种数据项按照相对位置存放的数据集 抽象数据类型无序列表 UnorderedList 方法 list() 创建一个新的空列表.它不需要参数,而返回一个空列表. add(item) 将 ...
- 【数据结构与算法Python版学习笔记】目录索引
引言 算法分析 基本数据结构 概览 栈 stack 队列 Queue 双端队列 Deque 列表 List,链表实现 递归(Recursion) 定义及应用:分形树.谢尔宾斯基三角.汉诺塔.迷宫 优化 ...
- 【数据结构与算法Python版学习笔记】递归(Recursion)——定义及应用:分形树、谢尔宾斯基三角、汉诺塔、迷宫
定义 递归是一种解决问题的方法,它把一个问题分解为越来越小的子问题,直到问题的规模小到可以被很简单直接解决. 通常为了达到分解问题的效果,递归过程中要引入一个调用自身的函数. 举例 数列求和 def ...
- 【数据结构与算法Python版学习笔记】图——最短路径问题、最小生成树
最短路径问题 概念 可以通过"traceroute"命令来跟踪信息传送的路径: traceroute www.lib.pku.edu.cn 可以将互联网路由器体系表示为一个带权边的 ...
- 【数据结构与算法Python版学习笔记】图——骑士周游问题 深度优先搜索
骑士周游问题 概念 在一个国际象棋棋盘上, 一个棋子"马"(骑士) , 按照"马走日"的规则, 从一个格子出发, 要走遍所有棋盘格恰好一次.把一个这样的走棋序列 ...
- 【数据结构与算法Python版学习笔记】图——词梯问题 广度优先搜索 BFS
词梯Word Ladder问题 要求是相邻两个单词之间差异只能是1个字母,如FOOL变SAGE: FOOL >> POOL >> POLL >> POLE > ...
- 【数据结构与算法Python版学习笔记】树——利用二叉堆实现优先级队列
概念 队列有一个重要的变体,叫作优先级队列. 和队列一样,优先级队列从头部移除元素,不过元素的逻辑顺序是由优先级决定的. 优先级最高的元素在最前,优先级最低的元素在最后. 实现优先级队列的经典方法是使 ...
随机推荐
- 第20篇-加载与存储指令之ldc与_fast_aldc指令(2)
ldc指令将int.float.或者一个类.方法类型或方法句柄的符号引用.还可能是String型常量值从常量池中推送至栈顶. 这一篇介绍一个虚拟机规范中定义的一个字节码指令ldc,另外还有一个虚拟机内 ...
- IPSEC的实现方式
IPSEC的实现方式 在IPSEC通信中涉及到一个重要方面,那就是如何定义要保护的数据流(又称为感兴趣流).这不仅涉及到IPSEC最终要保护哪部分数据,还关系到IPSEC的实现方式,因此有必要把感兴趣 ...
- [推荐]MyBatis 核心技术与面试 34 讲
MyBatis 核心技术与面试 34 讲 职业生涯中常被问到: 如何成为某方面的高手? 如何快速搞定某项技术? 我现在的水平处于什么阶段? -- 我暗暗想,我们从小学到中学到大学,经历了大考三六九.小 ...
- 无序数组求第K大的数
问题描述 无序数组求第K大的数,其中K从1开始算. 例如:[0,3,1,8,5,2]这个数组,第2大的数是5 OJ可参考:LeetCode_0215_KthLargestElementInAnArra ...
- 快乐中秋,SQL小白入门指南
目录 创建表 最基本的创建 怎么查看一个已经建好的表的信息呢 修改字段 插入数据 修改和删除数据 修改 删除 第一个查询 条件语句 使用age的大小比较,查看大于16岁的学生: 使用多个条件并联,大于 ...
- Docker系列(4)- run的流程和docker原理
回顾HelloWorld流程 底层工作原理 Docker是怎么工作的? Docker是一个Client-Server结构的系统,Docker的守护进程运行在宿主机上.通过Socket从客户端访问 Do ...
- JDBC-3(Transcation) ****
3.1 异常的使用说明 在工具类中(JDBCUtils)的方法最好声明异常(throws),以便后续实现类中去捕获这些异常. 工具类中捕获异常通常没有意义 eg:实现类中connection建立过程出 ...
- 写SQL的套路
定义问题 转化问题 如要解决的问题是:查出每门课程成绩都大于80分学生的姓名,可以转化为:只要学生最小分数的课程大于80分,就是所有课程成绩都大于80分. 查询同名同姓学生名单并统计同名人数--> ...
- 虚拟机安装配置centos7
安装 https://blog.csdn.net/babyxue/article/details/80970526 主机环境预设 更换国内yum源 epel源 https://www.cnblogs. ...
- MyBatis Plus 批量数据插入功能,yyds!
最近 Review 小伙伴代码的时候,发现了一个小小的问题,小伙伴竟然在 for 循环中进行了 insert (插入)数据库的操作,这就会导致每次循环时都会进行连接.插入.断开连接的操作,从而导致一定 ...