竟然在BZOJ上拿了Rank1太给力啦。 p.s.:汗,一发这个就被一堆人在2月27号强势打脸……

传送门(BZOJ)

传送门(UOJ)

说说这道题目吧:

首先是说说这个构图吧。因为有选择关系,我们很容易想到最小割。

Ans = sigma(i为白色){w[i]} + sigma(i为黑色){b[i]} - sigma(奇怪的i){p[i]}

转化一下就变成了sigma(所有的i){w[i]+b[i]} - sigma(i为白色){b[i]} -sigma(i为黑色){w[i]} - sigma(奇怪的i){p[i]}

对于每个店S向i连一条容量为b[i]的点(如果满流意味着选择白色), i向T连一条容量为w[i]的点(如果满流意味着选择黑色)

若点i会变得奇怪,我们新建一个点i'来,连一条容量为p[i]的边,表示i变得奇怪,对于范围内的点j,从i'连一条容量为INF的边

然后我们发现边数是O(N^2)的,跑即使是跑网络流这种O(玄学)的算法也不能过的。

所以是不是就没法做了呢?VFK大毒瘤?

其实VFK给我们带来了一片新天地,太神啦,我们可以把边直接连在区间上!!!

考虑用线段树,最底层的节点(表示区间长度为1的)连边向对应的节点,每一层的父亲连向儿子,那么就可以把变数变成O(nlgn)个

就可以跑网络流啦

但是VFK是好(du)人(liu),给我们来了一个只能向编号小的连边,那么就强行可持久化了。

代码:

#include <cstdio>
#include <algorithm>
#include <cstring>
#define MAXN 5005
#define MAXM 1000005
#define INF 999999999
using namespace std;
struct { int v, nxt, f; } e[MAXM];
int Adj[MAXN * 20], c = -1, n, m, S, T, a[MAXN], b[MAXN], w[MAXN], vd[MAXN * 20];
int L[MAXN], R[MAXN], P[MAXN], Q[MAXN*3], N, Ans, tot, sz, rt[MAXN], d[MAXN * 20], vn;
inline void Add(int u, int v, int f) {
++ c; e[c].v = v; e[c].f = f; e[c].nxt = Adj[u]; Adj[u] = c;
++ c; e[c].v = u; e[c].f = 0; e[c].nxt = Adj[v]; Adj[v] = c;
}
struct Seg { int lc, rc; } t[MAXN * 20];
inline void GET(int &n) {
static char c; n = 0;
do c = getchar(); while('0' > c || c > '9');
do n=n*10+c-'0', c=getchar(); while('0' <= c && c <= '9');
}
inline int Binary_Search(int p) {
int l = 1, r = N, mid, ans = 0;
while(l <= r) {
mid = (l + r) >> 1;
if(Q[mid] >= p) { ans = mid; r=mid-1; }
else l = mid+1;
}
return ans;
}
void Link(int rt, int l, int r, int i) {
if(L[i] > r || l > R[i]) return;
if(L[i] <= l && r <= R[i]) { Add(n+i, tot+rt, INF); return; }
int mid = (l + r) >> 1;
if(t[rt].lc) Link(t[rt].lc, l, mid, i);
if(t[rt].rc) Link(t[rt].rc, mid+1,r,i);
}
void Insert(int &rt, int p, int l, int r, int i) {
rt = ++ sz;
if(l == r) {
Add(tot + rt, i, INF);
if(p) Add(tot + rt, tot + p, INF);
return;
}
int mid = (l + r) >> 1;
if(a[i] <= mid) t[rt].rc = t[p].rc, Insert(t[rt].lc, t[p].lc, l, mid, i);
else t[rt].lc = t[p].lc, Insert(t[rt].rc, t[p].rc, mid+1, r, i);
if(t[rt].lc) Add(tot+rt, tot+t[rt].lc, INF);
if(t[rt].rc) Add(tot+rt, tot+t[rt].rc, INF);
}
int Aug(int u, int augco) {
if(u == T) return augco;
int delta, dmin = tot - 1, augc = augco, v;
for(int i = Adj[u]; ~i; i = e[i].nxt) if(e[i].f) {
v = e[i].v;
if(d[v] + 1 == d[u]) {
delta = Aug(v, min(augc, e[i].f));
e[i].f -= delta; e[i^1].f += delta;
augc -= delta;
if(d[S] >= tot || !augc) return augco - augc;
}
if(dmin > d[v]) dmin = d[v];
}
if(augco == augc) {
-- vd[d[u]];
if(!vd[d[u]]) d[S] = tot;
++ vd[d[u] = dmin + 1];
}
return augco - augc;
}
int sap() {
vd[S] = tot; int ans = 0;
while(d[S] < tot)
ans += Aug(S, INF);
return ans;
}
int main() {
GET(n); memset(Adj, -1, sizeof Adj);
for(int i = 1; i <= n; ++ i) {
GET(a[i]); GET(b[i]); GET(w[i]);
GET(L[i]); GET(R[i]); GET(P[i]);
Q[++ N] = a[i]; Q[++N] = L[i]; Q[++N] = R[i];
Ans += b[i] + w[i];
}
sort(Q+1, Q+N+1); N = unique(Q+1, Q+N+1) - (Q+1);
S = 2*n + 1; T = S+1;
tot = T;
for(int i = 1; i <= n; ++ i) {
a[i] = Binary_Search(a[i]);
L[i] = Binary_Search(L[i]);
R[i] = Binary_Search(R[i]);
Add(S, i, b[i]); Add(i, T, w[i]); Add(i, i+n, P[i]);
}
for(int i = 1; i <= n; ++ i) {
if(i > 1) Link(rt[i-1], 1, N, i);
Insert(rt[i], rt[i-1], 1, N, i);
}
tot = tot + sz; vn = tot;
printf("%d\n", Ans - sap());
return 0;
}

BZOJ3218 UOJ#77 A+B Problem(最小割+主席树)的更多相关文章

  1. 【bzoj3218】a+b Problem 最小割+主席树

    数据范围:$n≤5000$,$a,l,r≤10^9$,$b,w,p≤2\times 10^5$. 我们考虑一种暴力的最小割做法: 首先令$sum=\sum\limits_{i=1}^{n} b_i+w ...

  2. UOJ#77. A+B Problem [可持久化线段树优化建边 最小割]

    UOJ#77. A+B Problem 题意:自己看 接触过线段树优化建图后思路不难想,细节要处理好 乱建图无果后想到最小割 白色和黑色只能选一个,割掉一个就行了 之前选白色必须额外割掉一个p[i], ...

  3. bzoj3218 a+b Problem(最小割+主席树优化建边)

    由于6.22博主要学测,大半时间学文化课,近期刷题量&写题解的数量会急剧下降. 这题出得挺经典的,首先一眼最小割,考虑朴素的做法:与S联通表示白色,与T联通表示黑色,S向i连流量为w[i]的边 ...

  4. bzoj 3218 a + b Problem(最小割+主席树)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3218 [题意] 给n个格子涂白或黑色,白则wi,黑则bi的好看度,若黑格i存在: 1& ...

  5. BZOJ 3218 UOJ #77 A+B Problem (主席树、最小割)

    大名鼎鼎的A+B Problem, 主席树优化最小割-- 调题死活调不对,一怒之下改了一种写法交上去A了,但是改写法之后第4,5个点常数变大很多,于是喜提UOJ全站倒数第三 目前还不知道原来的写法为什 ...

  6. 【BZOJ-3218】a+b Problem 最小割 + 可持久化线段树

    3218: a + b Problem Time Limit: 20 Sec  Memory Limit: 40 MBSubmit: 1320  Solved: 498[Submit][Status] ...

  7. [bzoj3218] a+b problem [最小割+数据结构优化建图]

    题面 传送门 思路 最小割 我们首先忽略掉那个奇♂怪的限制,就有一个比较显然的最小割模型: 建立源点$S$和汇点$T$ 对于每个元素$i$建立一个点$i$,连边$<S,i,w[i]>$和$ ...

  8. Yet Another Maxflow Problem CodeForces - 903G (最小割,线段树)

    大意: 两个n元素集合$A$, $B$, $A_i$与$A_{i+1}$连一条有向边, $B_i$与$B_{i+1}$连一条有向边, 给定$m$条从$A_i$连向$B_j$的有向边, 每次询问修改$A ...

  9. bzoj3218 a + b Problem(网络流+主席树)

    $ans=\sum_{color_i=black}\ b_i+\sum_{color_i=white}\ w_i-\sum_{i=abnormal}\ p_i$ 把它转化一下 $ans=\sum_{i ...

随机推荐

  1. Factorial Trailing Zeroes

    Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...

  2. 利用scrollTop 制作图片无缝滚动

    <!doctype html><title>javascript无缝滚动 by 司徒正美</title><meta charset="utf-8&q ...

  3. MD5碰撞后时代,MD5还有存在的意义吗?

    MD5是一种HASH函数,又称杂凑函数,由32位16进制组成,在信息安全范畴有广泛和首要运用的暗码算法,它有类似于指纹的运用.在网络安全协议中, 杂凑函数用来处理电子签名,将冗长的签名文件紧缩为一段一 ...

  4. 浏览器中页面的visibility状态及变化监听

    需求 在浏览器中播放视频,当用户进行页面切换操作时.需要根据视频播放页是否处于可见状态,来控制视频的暂停及重新播放. 相关文档 参考MDN中,关于页面的可见性相关的API说明.https://deve ...

  5. Java上传Excel并解析

    1.上传: public String uploadFile(CommonsMultipartFile file,String uploadPath,String realUploadPath){ I ...

  6. jQuery单选框的回显

    代码示例: html: <div class="col-lg-4"> <label class="radio-inline"> < ...

  7. Windows&amp;Word 常用快捷键

    Win:显示开始菜单 Win + E:打开文件管理器 Win + D:显示桌面 Win + L:锁定计算机 Win + I:打开设置 Win + M:最小化所有窗口 Alt + F4:1.用来关闭当前 ...

  8. Jenkins+git

    https://www.cnblogs.com/Csir/category/1100433.html

  9. 在请求中使用XML Publisher生成文件报错

    在页面上使用按钮生成该文件不报错,但是使用请求就报错. 错误内容如下 Error : No corresponding LOB data found :SELECT L.FILE_DATA FILE_ ...

  10. DNS服务及相关概念

    DNS:域名服务器:Domain Name Server IANA:互联网号码管理局:Internet Assigned Numbers Authority ICANN:互联网名称与数字地址分配机构: ...