Problem Description
在魔方风靡全球之后不久,Rubik先生发明了它的简化版——魔板。魔板由8个同样大小的方块组成,每个方块颜色均不相同,可用数字1-8分别表示。任一时刻魔板的状态可用方块的颜色序列表示:从魔板的左上角开始,按顺时针方向依次写下各方块的颜色代号,所得到的数字序列即可表示此时魔板的状态。例如,序列(1,2,3,4,5,6,7,8)表示魔板状态为:

1 2 3 4
8 7 6 5

对于魔板,可施加三种不同的操作,具体操作方法如下:

A: 上下两行互换,如上图可变换为状态87654321
B: 每行同时循环右移一格,如上图可变换为41236785
C: 中间4个方块顺时针旋转一格,如上图可变换为17245368

给你魔板的初始状态与目标状态,请给出由初态到目态变换数最少的变换步骤,若有多种变换方案则取字典序最小的那种。

 
Input
每组测试数据包括两行,分别代表魔板的初态与目态。
 
Output
对每组测试数据输出满足题意的变换步骤。
 
Sample Input
12345678 17245368 12345678 82754631
 
Sample Output
C AC

由于刚做完八数码问题,再来做这题,认为非常简单。可是用bfs超时(原因是多组数据,太多的数据将程序拖到超时),用dbfs就一直wa(原来是反向的搜索不能保证后半段的字典序最小,只能保证后半段的逆序的字典序最小),所以就得不到正确结果。

百度了一下,原来使用映射+bfs预处理的方法解决的,这样,再多组数据也不怕了。

将任意的初始状态映射为12345678,在这个过程中得到一个映射函数,目标状态根据这个映射函数,映射为相应的目标状态。(这样子能得到正确答案的原因是,魔板的变换,其实只是位置的变换,数字只是用来标记位置的而已,通过同一种映射关系将初始和目标状态的标记同时该改变,所以仍然能得到正确答案)

那么所有的数据,都能转化为初始状态为12345678的搜索,那么只要一遍bfs搜索出12345678所有能到达的状态,并记录步骤即可。

 #include <stdio.h>
#include <string.h>
#include <queue>
#include <string>
#include <iostream>
using namespace std;
char st[],ed[];
int vis[];
string ans[];
int fac[] = {,,,,,,,,};
int getHash(char *str)//康托展开
{
int i,j,hash = ,cnt;
for(i=; i<; ++i)
{
cnt = ;
for(j=i+; j<; ++j)
if(str[j]<str[i])
cnt++;
hash += cnt * fac[-i-];
}
return hash;
}
struct node
{
char str[];
};
int d[][] = {{,,,,,,,},{,,,,,,,},{,,,,,,,}};
char change[]; void bfs()
{
queue<node> q;
node cur,tmp;
int i,j;
for(i=; i<; ++i)
cur.str[i] = i + '';
int hash = getHash(cur.str);
q.push(cur);
vis[hash] = true;
q.push(cur);
while(!q.empty())
{
cur = q.front(); q.pop();
int pHash = getHash(cur.str);
for(i=; i<; ++i)
{
for(j=; j<; ++j)
tmp.str[j] = cur.str[d[i][j]];
hash = getHash(tmp.str);
if(vis[hash]) continue;
vis[hash] = true;
ans[hash] = ans[pHash] + (char)('A' + i);
q.push(tmp);
}
}
} int main()
{
bfs();
int i;
while(scanf("%s%s",st,ed)!=EOF)
{
for(i=; i<; ++i)
change[st[i]-''] = i+'';//得到映射函数
for(i=; i<; ++i)
ed[i] = change[ed[i]-''];//根据映射函数改变目标状态
int hash = getHash(ed);
cout<<ans[hash]<<endl;
}
return ;
}