线段树在一些acm题目中经常见到,这种数据结构主要应用在计算几何和地理信息系统中。下图就为一个线段树:

(PS:可能你见过线段树的不同表示方式,但是都大同小异,根据自己的需要来建就行。)

1.线段树基本性质和操作

线段树是一棵二叉树,记为T(a, b),参数a,b表示区间[a,b],其中b-a称为区间的长度,记为L。

线段树T(a,b)也可递归定义为:

若L>1 :  [a, (a+b) div 2]为 T的左儿子;

             [(a+b) div 2,b]为T 的右儿子。 

若L=1 : T为叶子节点。

线段树中的结点一般采取如下数据结构:

struct Node
{
    int   left,right;  //区间左右值
    Node   *leftchild;
    Node   *rightchild;
};

线段树的建立:

Node   *build(int   l ,  int r ) //建立二叉树
{
    Node   *root = new Node;
    root->left = l;
    root->right = r;     //设置结点区间
    root->leftchild = NULL;
    root->rightchild = NULL;

    if ( l +1< r )
    {
       int  mid = (r+l) >>1;
       root->leftchild = build ( l , mid ) ;
       root->rightchild = build ( mid +1 , r) ;
    } 

    return    root;
}

线段树中的线段插入和删除

增加一个cover的域来计算一条线段被覆盖的次数,因此在建立二叉树的时候应顺便把cover置0。

插入一条线段[c,d]:

void  Insert(int  c, int d , Node  *root )
{
       if(c<= root->left&&d>= root->right)
           root-> cover++;
       else
       {
           if(c < (root->left+ root->right)/2 ) Insert (c,d, root->leftchild  );
           if(d > (root->left+ root->right)/2 ) Insert (c,d, root->rightchild  );
       }
} 

删除一条线段[c,d]:

void  Delete (int c , int  d , Node  *root )
{
       if(c<= root->left&&d>= root->right)
           root-> cover= root-> cover-1;
       else
       {
          if(c < (root->left+ root->right)/2 ) Delete ( c,d, root->leftchild  );
          if(d > (root->left+ root->right)/2 ) Delete ( c,d, root->rightchild );
       }
} 

2.线段树的运用

线段树的每个节点上往往都增加了一些其他的域。在这些域中保存了某种动态维护的信息,视不同情况而定。这些域使得线段树具有极大的灵活性,可以适应不同的需求。

例一:

桌子上零散地放着若干个盒子,桌子的后方是一堵墙。如图所示。现在从桌子的前方射来一束平行光, 把盒子的影子投射到了墙上。问影子的总宽度是多少?

这道题目是一个经典的模型。在这里,我们略去某些处理的步骤,直接分析重点问题,可以把题目抽象地描述如下:x轴上有若干条线段,求线段覆盖的总长度,即S1+S2的长度。

2.1最直接的做法:

设线段坐标范围为[min,max]。使用一个下标范围为[min,max-1]的一维数组,其中数组的第i个元素表示[i,i+1]的区间。数组元素初始化全部为0。对于每一条区间为[a,b]的线段,将[a,b]内所有对应的数组元素均设为1。最后统计数组中1的个数即可。

初始     0   0  0  0  0
[1,2]   1   0  0  0  0
[3,5]   1   0  1  1  0
[4,6]   1   0  1  1  1
[5,6]   1   0  1  1  1

其缺点是时间复杂度决定于下标范围的平方,当下标范围很大时([0,10000]),此方法效率太低。

2.2离散化的做法:

基本思想:先把所有端点坐标从小到大排序,将坐标值与其序号一一对应。这样便可以将原先的坐标值转化为序号后,对其应用前一种算法,再将最后结果转化回来得解。该方法对于线段数相对较少的情况有效。

示例:

[10000,22000]   [30300,55000]   [44000,60000]   [55000,60000]

排序得10000,22000,30300,44000,55000,60000

对应得1, 2, 3, 4, 5, 6

然后是 [1,2]     [3,5]    [4,6]    [5,6]

初始     0   0  0  0  0
[1,2]   1   0  0  0  0
[3,5]   1   0  1  1  0
[4,6]   1   0  1  1  1
[5,6]   1   0  1  1  1

10000,22000,30300,44000,55000,60000

1,       2,        3,       4,       5,       6

(22000-10000)+(60000-30300)=41700

此方法的时间复杂度决定于线段数的平方,对于线段数较多的情况此方法效率太低。

2.3使用线段树的做法:

给线段树每个节点增加一个域cover。cover=1表示该结点所对应的区间被完全覆盖,cover=0表示该结点所对应的区间未被完全覆盖。

如下图的线段树,添加线段[1,2][3,5][4,6]

插入算法:

void   Insert(Node  *root , int  a , int  b)
{
    int m;
    if( root ->cover == 0)
    { 

        m = (root->left+ root->right)/2 ;
        if (a == root->left && b == root->right)
            root ->cover =1;
        else if (b <= m)  Insert(root->leftchild , a, b);
        else if (a >= m)  Insert(root->rightchild , a, b);
        else
        {
                Insert(root->leftchild ,a, m);
                Insert(root->rightchild , m, b);
        }
    }
}

统计算法:

int  Count(Node *root)
{
    int  m,n;
    if (root->cover == 1)
            return   (root-> right - root-> left);
    else if (root-> right - root-> left== 1 )return 0;
    m= Count(root->leftchild);
     n= Count(root->rightchild);
    return m+n;
}

 

线段树(segment tree)的更多相关文章

  1. 线段树 Interval Tree

    一.线段树 线段树既是线段也是树,并且是一棵二叉树,每个结点是一条线段,每条线段的左右儿子线段分别是该线段的左半和右半区间,递归定义之后就是一棵线段树. 例题:给定N条线段,{[2, 5], [4, ...

  2. RMQ问题(线段树+ST算法)

    转载自:http://kmplayer.iteye.com/blog/575725 RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ ...

  3. Pascal 线段树 lazy-tag 模板

    先说下我的代码风格(很丑,勿喷) maxn表示最大空间的四倍 tree数组表示求和的线段树 delta表示增减的增量标记 sign表示覆盖的标记 delta,sign实际上都是lazy标志 pushd ...

  4. 【POJ 2528】Mayor’s posters(线段树+离散化)

    题目 给定每张海报的覆盖区间,按顺序覆盖后,最后有几张海报没有被其他海报完全覆盖.离散化处理完区间端点,排序后再给相差大于1的相邻端点之间再加一个点,再排序.线段树,tree[i]表示节点i对应区间是 ...

  5. poj 3264 【线段树】

    此题为入门级线段树 题意:给定Q(1<=Q<=200000)个数A1A2…AQ,多次求任一区间Ai-Aj中最大数和最小数的差 #include<algorithm> #incl ...

  6. [LintCode] Segment Tree Build II 建立线段树之二

    The structure of Segment Tree is a binary tree which each node has two attributes startand end denot ...

  7. [LintCode] Segment Tree Build 建立线段树

    The structure of Segment Tree is a binary tree which each node has two attributes start and end deno ...

  8. Aizu 2450 Do use segment tree 树链剖分+线段树

    Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...

  9. HDU 4107 Gangster Segment Tree线段树

    这道题也有点新意,就是须要记录最小值段和最大值段,然后成段更新这个段,而不用没点去更新,达到提快速度的目的. 本题过的人非常少,由于大部分都超时了,我严格依照线段树的方法去写.一開始竟然也超时. 然后 ...

随机推荐

  1. F#之旅0 - 开端

    F#之旅0 - 开端 UWP的学习告一段落,CozyRSS的UWP版本并没有做.UWP跟wpf开发几乎一模一样,然后又引入了很多针对移动设备的东西,这部分有点像android.没啥太大的意思,不难,估 ...

  2. 关于SQL储存过程中输出多行数据

    declare @num1 int           --为符合条件的总行数 select @num1=COUNT(1) from cardInfo where openDate between @ ...

  3. &quot;Emgu.CV.CvInvoke”的类型初始值设定项引发异常 解决办法

    系统win7 32位,只在这一台电脑上出现这种问题,已知VS编译是X86,在数台电脑上测试都正常. 后来把opencv的dll路径例如 E:\...\x86  加入到系统环境变量中就正常了. emgu ...

  4. php工作笔记6-手机端适应缩放

    1.静态页面

  5. Flex 加载dxf

    因为已经写过加载dwg了,dxf应该不陌生,dxf是个开源格式,所以加载比较简单这里直接附上as的代码,但是真正使用场景还是比较少,dwg文件比较多 package widgetscadastre.S ...

  6. 关于 ‘--exec’ 参数( find 命令)及介绍 ‘xargs ’命令区别(新版)

    前言: find 命令一直都是系统管理员的常用命令之一, 其参数中 "-exec" 尤其实用.而 "xargs" 命令,针对查询也有属于自己的见解.本文着重讲解 ...

  7. 读《深入理解Java虚拟机》有感——第二部分:虚拟机类加载机制

    一.类加载过程       执行时机:编译程序——>执行程序(JVM启动.程序运行),类加载发生在程序运行期间       各个阶段:分为加载阶段.连接阶段(验证.准备.解析).初始化.使用.卸 ...

  8. 转15个必须知道的chrome开发者技巧GIF

    在Web开发者中,Google Chrome是使用最广泛的浏览器.六周一次的发布周期和一套强大的不断扩大开发功能,使其成为了web开发者必备的工具.你可能已经熟悉了它的部分功能,如使用console和 ...

  9. 【No.2】监控Linux性能25个命令行工具

    接着上一篇博文继续 [No.1]监控Linux性能25个命令行工具 10:mpstat -- 显示每个CPU的占用情况 该命令可以显示每个CPU的占用情况,如果有一个CPU占用率特别高,那么有可能是一 ...

  10. 【转】并查集&amp;MST题集

    转自:http://blog.csdn.net/shahdza/article/details/7779230 [HDU]1213 How Many Tables 基础并查集★1272 小希的迷宫 基 ...