Increasing Speed Limits

Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 481    Accepted Submission(s): 245

Problem Description
You were driving along a highway when you got caught by the road police for speeding. It turns out that they\'ve been following you, and they were amazed by the fact that you were accelerating the whole time without using the brakes! And now you desperately need an excuse to explain that.

You've decided that it would be reasonable to say "all the speed limit signs I saw were in increasing order, that\'s why I've been accelerating". The police officer laughs in reply, and tells you all the signs that are placed along the segment of highway you drove, and says that's unlikely that you were so lucky just to see some part of these signs that were in increasing order.

Now you need to estimate that likelihood, or, in other words, find out how many different subsequences of the given sequence are strictly increasing. The empty subsequence does not count since that would imply you didn't look at any speed limits signs at all!

For example, (1, 2, 5) is an increasing subsequence of (1, 4, 2, 3, 5, 5), and we count it twice because there are two ways to select (1, 2, 5) from the list.

 
Input
The first line of input gives the number of cases, N. N test cases follow. The first line of each case contains n, m, X, Y and Z each separated by a space. n will be the length of the sequence of speed limits. m will be the length of the generating array A. The next m lines will contain the m elements of A, one integer per line (from A[0] to A[m-1]).

Using A, X, Y and Z, the following pseudocode will print the speed limit sequence in order. mod indicates the remainder operation.

for i = 0 to n-1
print A[i mod m]
A[i mod m] = (X * A[i mod m] + Y * (i + 1)) mod Z

Note: The way that the input is generated has nothing to do with the intended solution and exists solely to keep the size of the input files low.

1 ≤ m ≤ n ≤ 500 000

 
Output
For each test case you should output one line containing "Case #T: S" (quotes for clarity) where T is the number of the test case and S is the number of non-empty increasing subsequences mod 1 000 000 007.
 
Sample Input
2
5 5 0 0 5
1
2
1
2
3
6
2 2 1000000000 6
1
2
 
Sample Output
Case #1: 15
Case #2: 13
 
Source
 
Recommend
gaojie   |   We have carefully selected several similar problems for you:  3450 2227 2642 1255 3743 
 

在奔溃的边缘a了,搞了近一天= =!!

题意开始也没弄懂,后来知道是由一个数组推出目标数组(s[]):

for(int i=0;i<m;i++)
    scanf("%d",&a[i]);
for(int i=0;i<n;i++){
    s[i]=a[i%m];
    t[i]=s[i]; //用于离散化处理
    a[i%m]=(x*a[i%m]+y*(i+1))%z;
}

然后离散化处理:

sort(t,t+n);
cnt=0;
a[++cnt]=t[0];
for(int i=1;i<n;i++){
    if(t[i]!=t[i-1]){
        a[++cnt]=t[i];
    }
}

此处是简单的处理,实际运用则是在二分查找里(search());

最后处理目标数组s[],由dp思想可以从前状态推出后状态!然后用树状数组实现,时间复杂度就是O(n*lgn),贡献了了好多次TLE,一开始用map,后来才换成二分,map耗时较大,明白了简单的不一定好,出来混迟早要还的!!

 //2218MS    8136K    1668 B    G++
#include<iostream>
#include<map>
#include<algorithm>
#define M 1000000007
#define N 500005
#define ll __int64
using namespace std;
int c[N],a[N],t[N],s[N];
int cnt;
inline int lowbit(int k)
{
return (-k)&k;
}
inline void update(int k,int detal)
{
for(int i=k;i<=cnt;i+=lowbit(i)){
c[i]+=detal;
if(c[i]>=M) c[i]%=M;
}
}
inline int getsum(int k)
{
int s=;
for(int i=k;i>;i-=lowbit(i)){
s+=c[i];
if(s>=M) s%=M;
}
return s;
}
inline int search(int a0[],int m)
{
int l=,r=cnt,mid;
while(l<r){
mid=(l+r)>>;
if(a0[mid]<m) l=mid+;
else r=mid;
}
return l;
}
int main(void)
{
int cas,n,m,k=;
ll x,y,z;
scanf("%d",&cas);
while(cas--)
{
memset(c,,sizeof(c));
scanf("%d%d%I64d%I64d%I64d",&n,&m,&x,&y,&z);
for(int i=;i<m;i++)
scanf("%d",&a[i]);
for(int i=;i<n;i++){
s[i]=a[i%m];
t[i]=s[i];
a[i%m]=(x*a[i%m]+y*(i+))%z;
}
sort(t,t+n);
cnt=;
//map<int,int>Map;
//Map[t[0]]=++cnt;
a[++cnt]=t[];
for(int i=;i<n;i++){
if(t[i]!=t[i-]){
//Map[t[i]]=++cnt;
a[++cnt]=t[i];
}
}
ll ans=;
update(,);
for(int i=;i<n;i++){
int id=search(a,s[i]); //离散化的二分查找
int temp=getsum(id);
ans+=temp; //dp思想
if(ans>=M) ans%=M;
update(id+,temp);
}
printf("Case #%d: %I64d\n",k++,ans);
}
return ;
}

hdu 3030 Increasing Speed Limits (离散化+树状数组+DP思想)的更多相关文章

  1. HDU 3030 - Increasing Speed Limits

    Problem Description You were driving along a highway when you got caught by the road police for spee ...

  2. HDU 6318 - Swaps and Inversions - [离散化+树状数组求逆序数][杭电2018多校赛2]

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=6318 Problem Description Long long ago, there was an ...

  3. HDU 5792 World is Exploding (离散化+树状数组)

    题意:给定 n 个数,让你数出 a < b && c < d && a != b != c != d  && Aa < Ab & ...

  4. HDU 5862 Counting Intersections(离散化 + 树状数组)

    Counting Intersections Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

  5. HDU 6447 YJJ’s Salesman (树状数组 + DP + 离散)

    题意: 二维平面上N个点,从(0,0)出发到(1e9,1e9),每次只能往右,上,右上三个方向移动, 该N个点只有从它的左下方格点可达,此时可获得收益.求该过程最大收益. 分析:我们很容易就可以想到用 ...

  6. HDU 5862 Counting Intersections(离散化+树状数组)

    HDU 5862 Counting Intersections(离散化+树状数组) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 D ...

  7. hdu 3015 Disharmony Trees (离散化+树状数组)

    Disharmony Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. HDU 6318.Swaps and Inversions-求逆序对-线段树 or 归并排序 or 离散化+树状数组 (2018 Multi-University Training Contest 2 1010)

    6318.Swaps and Inversions 这个题就是找逆序对,然后逆序对数*min(x,y)就可以了. 官方题解:注意到逆序对=交换相邻需要交换的次数,那么输出 逆序对个数 即可. 求逆序对 ...

  9. CodeForces 540E - Infinite Inversions(离散化+树状数组)

    花了近5个小时,改的乱七八糟,终于A了. 一个无限数列,1,2,3,4,...,n....,给n个数对<i,j>把数列的i,j两个元素做交换.求交换后数列的逆序对数. 很容易想到离散化+树 ...

随机推荐

  1. Mono for android 如何动态添加View,线程内部如何更新UI.

    貌似所有设计到UI的程序原理都是一样的,子线程是不能够更新UI状态的,所以就必须使用UI自身或者第三方来更新UI. 如 在WinForm 中 就可以使用Control.Invoke(Action ac ...

  2. 深入理解css中position属性及z-index属性

    深入理解css中position属性及z-index属性 在网页设计中,position属性的使用是非常重要的.有时如果不能认识清楚这个属性,将会给我们带来很多意想不到的困难. position属性共 ...

  3. 取出type=&quot;button&quot; 和type=&quot;text&quot; 里面的值显示在页面

    <script  type="text/JavaScript> function changeLink() { document.getElementById("nod ...

  4. Javascript delete 引用类型对象

    很少使用javascript的delete,最近因为一个小bug发现删除引用类型对象的时候有一点不同.如下面例子: var testVar = { a : { test : 1 } }, test1 ...

  5. MTK6577+Android4.04编译

    MTK6577+Android4.04编译 编译命令 ./mk new 出错信息如下: **********checkingEnv************ Your building environm ...

  6. Spring+SpringMVC+Mybatis+MAVEN+Eclipse+项目完整环境搭建

    1.新建一个Maven项目,创建父项目. 2.创建子项目模块 3.创建javaWeb项目 4.创建后的项目目录结构 5.Maven文件配置 parent父项目pom.xml文件配置 <?xml ...

  7. Linux CPU 负载度量公式

    一个top命令不就行了么?顶多再加一些管道什么的过滤一下.我一开始也是这么想得.其实还可以理解的更多. 首先一个问题,是统计某个时间点的CPU负载,还是某个时间段的? 为了画折线图报表,一般横坐标都是 ...

  8. realvnc的卸载

    我安装了realvnc5.3.2后,采用如下方式卸载: (1)用如下命令查询当前安装的realvnc包的全名: rpm -qa realvnc-vnc-server (2) rpm -e 查询到的安装 ...

  9. 弱校ACM奋斗史

    看到这篇文章, 已是大三了, 我的ACM之路也即将走向终点, 感慨自己还是不够努力, 给自己的大学留下诸多遗憾. 和他们相比, 我差的就是太远了, 值得高兴的是我们学校有一个好老师-----赵靖老师, ...

  10. Python从零搭建Conf_Web配置管理平台

    环境 CentOS 6/7 x64 Python:2 .7.6 Etcd: 3.2.18 Confd:0 .16.0 Nginx: 1.12.1 效果演示 一,拓扑图: 二.涉及软件 ETD: .分布 ...