GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数。但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果。这个时候就是需要动脑筋了。数据量比较大的时候可以使用一个快速调优的方法——坐标下降。它其实是一种贪心算法:拿当前对模型影响最大的参数调优,直到最优化;再拿下一个影响最大的参数调优,如此下去,直到所有的参数调整完毕。这个方法的缺点就是可能会调到局部最优而不是全局最优,但是省时间省力,巨大的优势面前,还是试一试吧,后续可以再拿bagging再优化。

通常算法不够好,需要调试参数时必不可少。比如SVM的惩罚因子C,核函数kernel,gamma参数等,对于不同的数据使用不同的参数,结果效果可能差1-5个点,sklearn为我们提供专门调试参数的函数grid_search。

参数说明

class sklearn.model_selection.GridSearchCV(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch=‘2*n_jobs’, error_score=’raise’, return_train_score=’warn’)

(1)       estimator

选择使用的分类器,并且传入除需要确定最佳的参数之外的其他参数。每一个分类器都需要一个scoring参数,或者score方法:estimator=RandomForestClassifier(min_samples_split=100,min_samples_leaf=20,max_depth=8,max_features='sqrt',random_state=10),

(2)       param_grid

需要最优化的参数的取值,值为字典或者列表,例如:param_grid =param_test1,param_test1 = {'n_estimators':range(10,71,10)}。

(3)       scoring=None

模型评价标准,默认None,这时需要使用score函数;或者如scoring='roc_auc',根据所选模型不同,评价准则不同。字符串(函数名),或是可调用对象,需要其函数签名形如:scorer(estimator, X, y);如果是None,则使用estimator的误差估计函数。

(4)       fit_params=None

(5)       n_jobs=1

n_jobs: 并行数,int:个数,-1:跟CPU核数一致, 1:默认值

(6)       iid=True

iid:默认True,为True时,默认为各个样本fold概率分布一致,误差估计为所有样本之和,而非各个fold的平均。

(7)       refit=True

默认为True,程序将会以交叉验证训练集得到的最佳参数,重新对所有可用的训练集与开发集进行,作为最终用于性能评估的最佳模型参数。即在搜索参数结束后,用最佳参数结果再次fit一遍全部数据集。

(8)        cv=None

交叉验证参数,默认None,使用三折交叉验证。指定fold数量,默认为3,也可以是yield训练/测试数据的生成器。

(9)       verbose=0scoring=None

verbose:日志冗长度,int:冗长度,0:不输出训练过程,1:偶尔输出,>1:对每个子模型都输出。

(10)   pre_dispatch=‘2*n_jobs’

指定总共分发的并行任务数。当n_jobs大于1时,数据将在每个运行点进行复制,这可能导致OOM,而设置pre_dispatch参数,则可以预先划分总共的job数量,使数据最多被复制pre_dispatch次

(11)   error_score=’raise’

(12)   return_train_score=’warn’

如果“False”,cv_results_属性将不包括训练分数

回到sklearn里面的GridSearchCV,GridSearchCV用于系统地遍历多种参数组合,通过交叉验证确定最佳效果参数。

目的

通过训练集的训练求出所需模型的最佳参数。

代码简单实现

import pandas as pd
from sklearn.model_selection import GridSearchCV,train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import precision_score,recall_score,f1_score,roc_auc_score,roc_curve
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')#处理警告
data = pd.read_excel('文件路径')
data = pd.DataFrame(data)
X = data.iloc[:,:-1]
Y = data.iloc[:,-1]
trainx,testx,trainy,testy = train_test_split(X,Y,test_size=1/3,random_state=3)#random_state相当于随机种子 best_ting = {
'max_iter':[20,40,60,100],
'C':[0.01,0.1,1,10]
}
# 使用测试集对模型进行验证,并利用GridSearchCV技术对逻辑回归模型进行超参调优,
#网格搜索最优超参数
best_g = GridSearchCV(LogisticRegression(),best_ting,cv=5)
best_g.fit(trainx,trainy)
print(best_g.best_params_)#输出最优参数 best_model = LogisticRegression(max_iter=20,C=10)
best_model.fit(trainx,trainy)
best_H = best_model.predict(testx)
best_yH = best_model.predict_proba(testx)
# 并输出测试数据集的精确率、召回率、F1值、AUC值,画出ROC曲线
print('精准率:',precision_score(testy,best_H))
print('召回率:',recall_score(testy,best_H))
print('F1率:',f1_score(testy,best_H))
print('AUC:',roc_auc_score(testy,best_yH[:,-1]))
fpr,tpr,theta = roc_curve(testy,best_yH[:,-1])
print('fpr=\n',fpr)
print('tpr=\n',tpr)
print('theta=\n',theta)
#画出ROC曲线
plt.plot(fpr,tpr)
plt.show()

  

关于sklearn.metrics.roc_curve()

主要用来计算ROC面积的

''
sklearn.metrics.roc_curve(y_true, y_score, pos_label=None, sample_weight=None, drop_intermediate=True)
输入:其中y_true为真实标签,y_score为预测概率,或称为置信度。pos_label为正类样本标签,一般为1。
输出:fpr(假正率、1-特效性)、tpr(真正率、灵敏度)、thresholds(阈值)
假正率 = 预测为正类的负样本/所有负类样本,越小越好。
真正率 = 预测为正类的正样本/所有正类样本,越大越好。
'''

#这个还有些不理解,在学习中..

修改于2019-07-1219:28:34

仝渊涛

机器学习笔记——模型调参利器 GridSearchCV(网格搜索)参数的说明的更多相关文章

  1. 调参必备---GridSearch网格搜索

    什么是Grid Search 网格搜索? Grid Search:一种调参手段:穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果.其原理就像是在数组里找最 ...

  2. 机器学习:使用scikit-learn库中的网格搜索调参

    一.scikit-learn库中的网格搜索调参 1)网格搜索的目的: 找到最佳分类器及其参数: 2)网格搜索的步骤: 得到原始数据 切分原始数据 创建/调用机器学习算法对象 调用并实例化scikit- ...

  3. 【新人赛】阿里云恶意程序检测 -- 实践记录10.27 - TF-IDF模型调参 / 数据可视化

    TF-IDF模型调参 1. 调TfidfVectorizer的参数 ngram_range, min_df, max_df: 上一篇博客调了ngram_range这个参数,得出了ngram_range ...

  4. GridSearchCV网格搜索得到最佳超参数, 在K近邻算法中的应用

    最近在学习机器学习中的K近邻算法, KNeighborsClassifier 看似简单实则里面有很多的参数配置, 这些参数直接影响到预测的准确率. 很自然的问题就是如何找到最优参数配置? 这就需要用到 ...

  5. 【新人赛】阿里云恶意程序检测 -- 实践记录10.20 - 数据预处理 / 训练数据分析 / TF-IDF模型调参

    Colab连接与数据预处理 Colab连接方法见上一篇博客 数据预处理: import pandas as pd import pickle import numpy as np # 训练数据和测试数 ...

  6. 机器学习之SVM调参实例

    一.任务 这次我们将了解在机器学习中支持向量机的使用方法以及一些参数的调整.支持向量机的基本原理就是将低维不可分问题转换为高维可分问题,在前面的博客具体介绍过了,这里就不再介绍了. 首先导入相关标准库 ...

  7. 【新人赛】阿里云恶意程序检测 -- 实践记录11.3 - n-gram模型调参

    主要工作 本周主要是跑了下n-gram模型,并调了下参数.大概看了几篇论文,有几个处理方法不错,准备下周代码实现一下. xgboost参数设置为: param = {'max_depth': 6, ' ...

  8. python 机器学习中模型评估和调参

    在做数据处理时,需要用到不同的手法,如特征标准化,主成分分析,等等会重复用到某些参数,sklearn中提供了管道,可以一次性的解决该问题 先展示先通常的做法 import pandas as pd f ...

  9. 100天搞定机器学习|Day56 随机森林工作原理及调参实战(信用卡欺诈预测)

    本文是对100天搞定机器学习|Day33-34 随机森林的补充 前文对随机森林的概念.工作原理.使用方法做了简单介绍,并提供了分类和回归的实例. 本期我们重点讲一下: 1.集成学习.Bagging和随 ...

随机推荐

  1. 【NLP】基于自然语言处理角度谈谈CRF(二)

    基于自然语言处理角度谈谈CRF 作者:白宁超 2016年8月2日21:25:35 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务 ...

  2. java基础-servlet-2:生命周期

    1.加载(class load) 2.实例化 3.init() 4.doGet() 5.destroy 只有一个对象存在于服务端提供服务.再次访问,不会再起新对象.

  3. leetcode36. Valid Sudoku

    Determine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules. The Sudoku board could be ...

  4. StringBuilder的Append()方法会比+=效率高

    StringBuilder strSql = new StringBuilder(); strSql.Append("select top 1 id from " + databa ...

  5. PagerAdapter instantiateItem()方法position错误解决方案

    异常信息:java.lang.IndexOutOfBoundsException: index=3 count=2 在instantiateItem各个条目View的时候.会有 container.a ...

  6. JavaScript是如何工作的:引擎,运行时和调用堆栈的概述!

    摘要: 理解JS执行原理. 原文:JavaScript是如何工作的:引擎,运行时和调用堆栈的概述! 作者:前端小智 Fundebug经授权转载,版权归原作者所有. 本文是旨在深入研究JavaScrip ...

  7. hightopo学习之旅一 -- 节点动画

    参照官网 动画手册 1.引入所需HT文件 <script src="plugins/ht/core/ht.js"></script> <script ...

  8. EF 6.x实现dynamic动态查询

    利用SqlQuery实现动态查询 public static IEnumerable<dynamic> SqlQueryDynamic(this DbContext db, string ...

  9. [UE4]AIPerception,AI感知

  10. VMware启动Centos时出现错误Cannot open the disk &#39;xxxxxxx.vmdk&#39; or one of the snapshot disks it depends on. .

    今天拔装虚拟机的硬盘的时候,没有关掉虚拟机,导致虚拟打开的时候出现:Cannot open the disk 'xxxxxxx.vmdk' or one of the snapshot disks i ...