创建型模式分为五类:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式

一、工厂方法模式:接口-实现类、工厂类

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAq0AAAFDCAIAAACfmKCTAAAbOklEQVR4nO3d328j12EvcP+VedFTHov0As1LF/tSwEAfLpAnBXdTBAIKtzFuC3aTYgsni22umhuhaRVbtnxjM8FyYco1N1pdwlpV6v6Q1ytOH0Ykh+SQIqXRHJ4znw++CLhjckQxh3O+nB/iOxkA0FTvhH4CsJTXby72vjz76cd9kfTyzbcXod9hNJceQBxev7n48a//uLHVFkkvZ6/fhn6H0Vx6AHHQAyTh6AEEpAcQBz1AEo4eQEB6AHHQAyTh6AEEpAcQBz1AEo4eQEB6AHHQAyTh6AEEpAcQBz1AEo4eQEB6AHG4eQ/Isqz0tkjw6AEEpAcQh2p7wOw/RwvnCT5VSMLRAwhIDyAOVfWA0pVP3WfeY0VuKXoAAekBxOEmPaC4no2FBwgyPUBCRA8gID2AOCzuAXf3z7OT/t2FC7OZ6T+bmd1nl5Qs3z6d/VnlC0WWix5AQHoAcZjbA7ZPsyzLDnpXLswqPC5wv3+YZVl2eu/KhSJLRA8gID2AOJT0gKUbQJ58PcV/lt6ndDM9Z3lvL8tmdgOULhRZFD2AgPQA4jCvBxzuP7ly4WglG9WeJ5jvAJia8ksXiiyMHkBAegBxmHdc4O7+eTYz8ZcuzMrm++x65wlqAFJp9AAC0gOIQ4XnCeYrnFpY/E+lxndznqBUHT2AgPQA4nAbf0cou971AiJVRw8gID2AONywB+Qr2Zg8V2BjThsQqTl6AAHpAcTB9wxJwtEDCEgPIA56gCQcPYCA9ADioAdIwtEDCEgPIA56gCQcPYCA9ADioAdIwtEDCEgPIA56gCQcPYCA9ADioAdIwtEDCEgPIA56gCQcPYCA9ADioAdIwtEDCEgPIA56gCQcPYCA9ADioAdIwtEDCEgPIA56gCQcPYCA9ADiUF8P2D7NstN7oScGaVT0AALSA4hDeQ+43z8c3mFvu6KNsh4gtUcPICA9gDiU9YDeXpYd7j/Z2GpvbD15cFLR5K0HSO3RAwhIDyAOJT3gfv8wO39wv+qNsh4gtUcPICA9gDjM2x+QHfRmtqpPHpyMHjea0Z88OMn2tnt7l8snC8T4+ML5g/3TqUfNrKq3l50/2M4fcgtFRJoXPYCA9ADiUH5+wPZp/l+HRwfalzP3sBzc3T/PTvp3R8uH0/a9g2y4fOoheVHIp/x5qyreR6SC6AEEpAcQ3kH/5UH/5eL7LLhe4O7+eZZllxPz9MGC3t7lP/P9AcPlxZ3/Uw8Z/ae5q+rtVXhaosgSPeDF+dsPv3he0RsOJugBhPfuz/7wvfc+/d57n7638x/zCsEV1w3e7x/mewUKVxCM7G23F/WAqRMCJnpA6ar0AKk483rAi/O3v/p9/wcfdL77472Nex/1T89v9laDEnoA4b37sz+0n572T89/vv/sz//us9JCcNXfD3jy4GTUA0qP2d98f8AoeoBUnKkeUJz+f/TLbr4n4HvvfaoHcBv0AMLLe8Don6WFYLYH3N0/H58kuH2aFfb/zzt5sLwHFK8/vNwHUHJ+QCF6gFScvAeUTv8jegC3RA8I483bi3/86I+t3adTKb7PX5y/nb1Dkvf5H3/z6f/76j9nX6ViIfjbf/3qr/7v06mt572D0X2LH9yLJ/lnxUl9Tg8oHgI4vXe/f1h+vcBoVXqAVJyPuifzpv+RvAe0n57Ovr9+vv+seM+o73PlqUJUTg8Io396/r//rTf73ii+B/qn56Vzanr3+dP3Pv34YGK+Hfnwi+c/+mX3uz/e+5//9Ph//ct0DxBJI//n8/73f/K77//kd63dp0+fvyp9L+Q94MMvns++v/7xoz++eXtRfNdEep8ffND50S+7pb8+t0cPILyp4wJZYfr/wQedX/2+/+L8re8ZkoSTHxd4+vxVa/fp93/yuz//u89+vv9s6ihAE44L/Or3fT2gfnoA4Y16wOz0P7qPHiAJZ+o8wYP+y/d2/uN7731aLAR6ALdEDyC8d3/2h3d/9ofS6X9ED5CEM++6wWIh+O6P9/QAboMeEMzJyzehn8K6+PCL5/Om/xE9QBLOlX9H6KD/cuqAepI+/OL51q8OQj+LxtEDwvjN46/V3pXoAZJw/F3hkeS7zhrSA8Kw+2tVeoAkHD2AgPSAMPSAVekBknD0AALSA8LQA1alB0jC0QMISA8IQw9YlR4gCUcPyD19/uqff/f/Qz+LxtEDwtADVqUHSMLRA3I2jEHoAWEY7qvSAyTh6AE5G8Yg9IAw8r8THvpZxEQPkISjB+T0gCD0AOKgB0jC0QNyekAQegBx0AMk4egBOT0gCD2AOHzz9uLr/3rz5devRdLLxcUg9DtsLegBQegBwfh+gZUMBoNvv/32HFI0GOgBWeb7BQLRA8Lw/QKrGgwGr1+/PoMU6QEjvl+gfnpAGHZ/rUoPIGF6AAHpAWHoAavSA0iYHkBAekAYesCq9AASpgcQkB4Qhh6wKj2AhOkBOd8vEIQeEIYesKo16AFHm1vdncvbx61Wfvtos9XrBHxSJEEPyNkwBqEHhGG4r2q9ekC7u/HoKL+586i92Q73pEiCHpCzYQxCDwjD9wusaq16wMTcX+gEcD16QE4PCEIPIA436wHHrdbob7h2d87OOrudy3+Op/Cjza1ua7h8Ypq/vGd32AOONrc6rd7wDr3enfHxArgOPSCnBwShBxCHG/WAqY/svd6d4UH9wif7o81RLWh3N2am/M5up7CwOPFP/RNWpgfk9IAg9ADisGoPGH3iv7N7fDnHD2fr8c6A8R3OJqfz4e12d2N8GuBw4fQOgMndA7A6PSCnBwShBwTj+wVWUsX5AZdtoLXbKTuiv3QPsD+AqukBOd8vEIQeEIbvF1hVRecJHrda7c3d0iP6ZT2g17tTflzA+QFUSQ8Y8f0C9dMDwrD7a1U36QETBwIeHU0uGc3oZT1g4vjC0fBvBrhegIrpAQSkB4ShB6xqDa4bLPD3A6iUHkBAekAYesCq1qsHzD1XAK5DDyAgPSAMPWBVa9YDoEp6QM73CwShB4ShB6xKDyBhekDOhjEIPSAMw31VegAJ0wNyNoxB6AFh+H6BVekBJEwPyOkBQegBxKHYAx5+8tV3fvjbzV88dmOZG3/xD59/1HnmRm03/uSvPzk4PL7yhh4wSw8IQg8gDvYHkDA9IKcHBKEHEAc9gITpATk9IAg9IJgX529DP4WY6AEkTA/I+X6BIPSAMH7z+GvDfSV6AAnTA0Z8v0D99IAw7P5a1WAw+Pbbb7+BFOkBBKQHhKEHALAO9IAw9AAA1oEeEIYeADDF9wsEoQeEoQcATLFhDEIPCMNwB5hiwxiEHhDG0+evfvP469DPAmCN6AFB6AEArAU9IAg9AIC1oAcEoQcAsBb0gCD0gGB8vwBAke8XCEIPCMP3CwDM8v0C9dMDwrD7C4B1oAeEoQcAsA70gDD0AADWgR4Qhh4AMMX3CwShB4ShBwBMsWEMQg8Iw3AHmGLDGIQeEIbvFwCYogcEoQcAsBb0gCD0AADWgh4QhB4AwFrQA4LQA4Lx/QIARf7gehB6QBiGO8AsH5DqpweEYfcXAOtADwhDDwBgHegBYegBAKwDPSAMPQBgij+wFoQeEIYeADDFhjEIPSAMwx1gig1jEHpAGHZ/AUzRA4LQAwBYC3pAEHoAAGtBDwhCDwBgLegBQegBwfjzmbD+vnl78fKbt1JP/qXd/6vtbvCn0Zy8fnOR6QGh+H4BiMLLb97+5N+f/eUHX0o9efefDoI/h+YkH+R6QBh2f0EUXn7z9i8/+HJjqy2SXvJBrgeEoQdAFPQASTj5INcDwtADIAp6gCScfJDrAWHoARAFPUASTj7I9YAw9ACIgh4gCScf5HpAGHoAREEPkISTD/JxD3j15uLo9Jsvv34tNeTD7smDj58FfxrNycVgEGgeIW56gCScfJC/Y7hLExJoEiF6NoyScPJBrgdIIxJoEiF6NoyScPJBrgdIIxJoEiF6NoyScPJBrgdIIxJoEiF6NoyScPJBrgdIIxJoEiF6NoyScPJBrgdIIxJoEiF6NoyScPJBrgdIIxJoEiF6cW8Yt0+z7PRe8Kch65p8kOsB0ogEmkSIXvmG8X7/cHiHve3LhfcOsizLsoPe1J3v7p9nWZad9O8ufHj5whtGD5CFycebHiCNyC1PFiSrbMPY28uyw/0nG1vtja0nD04uJ9rLHjA97/b2suzw5LzQA0ofXr7Om0YPkIXJh6weII1I/fMHaSjZMN7vH2bnD+5Pj7F7B1l20H9wMprO2xtb7Y3t0+ykf2+/0ANKHz5nnTeNHiALkw9yPUAakTBzCPGbtz9gdv//vYMsO+jdLU75W+17B9nh/pPJhaUPL1/nxlZ7Y+vJg5PR0xlN6k8enGR72729y+WFDjE+vnD+YP906iEz6+ntZecPtvOH3EIRkfVOPhr0AGlEbm2aIHHlG8bt0/y/Fj/65z1g4pP98PZUOSh9ePnCfPIe9oPCevJJ/fIH3TvIJpZf3j9vCfmUP289xftI45IPOT1AGpE6ZgxStGDDeHkCYFY4P+Cgl8+4+Vx+d/88n3qne0DZw8sXTh8v6O1d/jPfHzBcPtr/P3X/ecvH6+ntVXhaosSWfJDrAdKI1Dp1kJArNoz3+4fDT/DDHjCafcdTdWkPmHp4+cLCRQQje9vtuT1g6oSAiR5Quh49oNHJR0J9PWD8JrmNOB1GFuaWJgmSd9WGcfzpv7CJ6+1l2d7BeKM0twcUHl6+cO75gzfcHzCKHtDo5IP8ih6wwhWxJZk4IjXRAyq/UlYPkIWpbdogMbMbxtHe/o2tfMtTOEhf3Nxlpcfjyx8+b51TW9FC5vSA4vWHl5vZkvMDCtEDGp18kC/XA66+IrY083rALVwpqwfIwtQ3b5CWhRvGrHiO/cRHnYm5fHp/wNyHzyzc2GpPnuefFef1sh5Q/JR1eu9+/7D8eoGs2Bv0gMYmHwpL9IBlrohdIuM3yW1cKasHyMJUMCHQSE6ckoSTD/JlesAyV8S2Sy9Ond5RVryaZc6erqk1XOsy2XmrcqVsc1P9/EAz6AGScPJBvlQPWOKK2ImdVKMpf04PKL1StqrLZBesypWyzU1t0waJ0QMk4eSDfLkesPQVsXlG/2luDxjdLcuuurx1xdNiF63KkbDmpvbpg0ToAZJw8kG+ZA9Y4orYqetTl+gBo0cd7j+p7DLZ2WcyXpUe0NxUOTPQJHqAJJx8kC/dAxZfEXu/f1iYYpfcH7Cx1R7vaajqMtnZ/zSOHtDchJhBSIEeIAknH+TL94BFV8RO9oDeXrZof8CcK2Wrukx2war0gOam1qmDhOgBknDyQb5CD1h8RezwYH92efb+wv0Bc66Ureoy2Xmr0gOam0qnBhpED5CEkw9y3y8gjUigSYTo2TBKwskHuR4gjUigSYTo2TBKwskHuR4gjUigSYTo2TBKwskHuR4gjUigSYTo2TBKwskHuR4gjUigSYTo2TBKwskHuR4gjUigSYTo2TBKwskHuR4gjUigSYTo2TBKwskHuR4gjUigSYTo2TBKwskHuR4gjUigSYTovX5zEfopwG1583aQ6QHSkIR7oxG3wWDw8uXLM0hRPsj1AGlEAk0iRE8PIGH5INcDpBEJNIkQPT2AhOWDXA+QRiTQJEL09AASlg9yPUAakUCTCNHTA0hYPsj1AGlEAk0iRE8PIGH5IJ/oAb9+fPLTj/si6SXQJEL01qAHHG1udXcubx+3Wvnto81WrxPwSZGEfJC/UxzuFxcXbyFFgSYRordePaDd3Xh0lN/cedTebId7UiQhH+TvrNNwh9sSaBIhemuwYRz3gIm5v9AJ4HryQa4H0AiBJhGid7MN43GrNTpJpbtzdtbZ7Vz+czyFH21udVvD5RPT/OU9u8MecLS51Wn1hnfo9e6MjxfAdeSDXA+gEQJNIkTvRhvGqY/svd6d4UH9wif7o81RLWh3N2am/M5up7CwOPFP/RNWlg9yPYBGCDSJEL1VN4yjT/x3do8v5/jhbD3eGTC+w9nkdD683e5ujE8DHC6c3gEwuXsAVpcPcj2ARgg0iRC9KjaMl22gtdspO6K/dA+wP4Cq5YNcD6ARAk0iRK+iDeNxq9Xe3C09ol/WA3q9O+XHBZwfQJXyQb5WPcBlstyWQJMI0bvJhnHiQMCjo8kloxm9rAdMHF84Gm4MXS9AxfJBvq49wGWyVCrQJEL01mDDWGDDSKXyQb6mPUDtpVqBJhGitwYbxqJ55wrAdeSDvKoe4DJZ1lqgSYTorVkPgCrlg7yiHuAyWdZboEmE6OkBJCwf5NfvAS6TJSKBJhGipweQsHyQV3t+gMtkWVOBJhGiV9wwftR59v5O96POs7W98flB//2d7q8//6Mbdd54+MlXB4fHsdyY3TBWfp6gy2RZR4EmEaKnB7ihByzFZbKsuUCTCNFzXICE5YN8ra4bLHCZLJUKNIkQvfXaMEKl8kG+rj3AZbJUKtAkQvTWbMMIVcoH+dr2AKhSoEmE6NkwkrB8kOsBNEKgSYToDQaDC0hUPsj1ABoh0CQCsO7Ke8D7O93v/PC37+90G3Jj8xePH37ylRu13fiLf/j8o86z276hBwBcyf4AGiHgewxgnekBNELA9xjAOtMDaISA7zGAdaYH0AgB32MA62yiB5yfn7+EFAV8jwGss4keAAkL+DYDWFvvXH0XACBRegAANJceAADNpQcAQHPpAQDQXHoAADSXHgAAzaUHAEBz6QEA0Fx6AAA0lx4AAM2lBwBAc+kBANBcegAANJceAADNpQcAQHPpAQDQXHoAADSXHgAAzaUHAEBz6QEA0Fx6AAA0lx4AAM2lBwBAc+kBANBcegAANJceAADNpQcAQHPpAQDQXHoAADSXHgAAzaUHAEBz6QEA0Fx6AAA0lx4AAM2lBwBAc+kBANBcegAANJceAADNpQcAQHPpAQDQXHoAADSXHgAAzaUHAEBz6QEA0Fx6AAA0lx4AAM2lBwBAc+kBANBcegAANJceAADNpQcAQHPpAQDQXHoA8Xn95uLhZ8c//bgvklgefnb8+s1F6HcYzaIHEJ/Xby7+7O87G1ttkcTyZ3/f0QOomR5AfPQASTV6APXTA4iPHiCpRg+gfnoA8dEDJNXoAdRPDyA+eoCkGj2A+ukBxEcPkFSjB1A/PYD46AGSavQA6qcHEB89QFKNHkD99ADiowdIqtEDqJ8eQHz0AEk1egD10wOIjx4gqUYPoH56APHRAyTV6AHUTw8gPmvSA7IsC/4cJLHoAdRPDyA+VfWAJX/c1EOuvC1y7egB1E8PID6lPWDJx0495Bpb6tGjZm+I3DB6APXTA4jPkvsDsqum5yvvcKsPF5mNHkD99ADiE6QHLPncgk8kEnX0AOqnBxCf4PsD8gcW/1ekkugB1E8PID5he0Dm/AC5tegB1E8PID4Be0DmegG5zegB1E8PID4Bzw+oam0ipdEDqJ8eQHyCnx9QycNFZqMHUD89gPjU3wNWenrB5xKJN3oA9dMDiM867A/IXCwgtxA9gPrpAcQneA/InCEotxM9gPrpAcRntges9PDRQ663pZ594LVXJTIVPYD66QHEp5LvGcquddHgvEct+E8iy0cPoH56APG5eQ/IVpyz859b1d1E5kUPoH56APGp6nuHRdYtegD10wOIjx4gqUYPoH56APHRAyTV6AHUTw8gPnqApBo9gPrpAcRHD5BUowdQPz2A+OgBkmr0AOqnBxAfPUBSjR5A/fQA4qMHSKrRA6ifHkB89ABJNXoA9dMDiI8eIKlGD6B+egDx0QMk1egB1E8PID56gKQaPYD66QHERw+QVKMHUD89gPjoAZJq9ADqpwcQn9dvLh5+dvzTj/siieXhZ8d6ADXTA4jPYDB4C4kaDAah32E0ix5AfAaDwYsXL84gOS9evNADqJkeQHz0AFKlB1A/PYD46AGkSg+gfnoA8dEDSJUeQP30AOKjB5AqPYD66QHERw8gVXoA9dMDiE9dPeBoc6u7M7O0s9u5s3t8+z/9iqcRyc89brWCPPmbO9ps9Tq1/1Q9gPrpAcRnTXrAzqP2xqOjxavYeXT5d+JuUB1i7gHt7uglmnkpjlutTqtX/rhlXtsyi9a5qp1H7c12Natanh5A/fQA4rMmPeBq7e7G8DPlzqNrz6kR94DxVFryUlQ5Zw9Vus5CiamNHkD99ADic7MecLS51W3tdiY/mxbnvNHt0nuOe8C4ELS7w78PPzkJFSa/kc5whcM5ZuKnjD+Ajtb5qDt6bjOPPctnvs1HnZldDqVPfvLO46e9+OeWvjglv3XZrzZ8QaZfiuNWa/hH9S+XTzy34Wtb/uKMdi0UHl6yzp1HE/+vbTw6WvD/6cwLe3bW692pvYHpAdRPDyA+N+4Bxek/n6jm9YDhPXu9O4XZbrIHFGa7GfmMNZ6he70744/F+cR2tDmaftrdjfGPLk6u3Z3yx55dTn4lH1tLf83CnQu/UeF22c+d++JM/tblv9p4Hp1+KaY/u0/8IoXXdubFGf+g2Vd+cp3j8jFaXvaylL+w08+/HnoA9dMDiM+qPaAz8flvenKambGOyj4Hj2eI6R5Q9qF/Uv45tdPqFT53lj+f4e2JdV4uLHvs2fw94aVPvnDnyZ3elx+dy37uEs9w4kUeP72Sz9Pjl6KsB4z/WdwfMP2jl+8BJTN9ycsy54UtXf+t0wOonx5AfG5+XKDeHnD58Hx398xn91V6QMnn/sp6wGa7/Oeu0AMW/WrTL8X1e0C+k6D87MvpVyNfT+GUjjk9oPw8APsDaAQ9gPhUdlxgYn/4eJov7A9f4rhAcQf7pM5up7j3frNdesh5zkfe0uMCJdPSgh4w++QLdy49LlD6c0tfnNnfuvxXG69t+qW4dg9od+efpznzavR6d1rdzfHCspdl3nkAzg+gGfQA4lPheYKz58fd2e2tep5gYcfy1JQ8/uRaPPI9eefys/AKxzKORpfgl/2gRfsDZn7NmcPnM+cJlv7cshen5MnMLikcbp//Ukwfwi++yPNKUnv2mZet8+zySMTkTo7Z//fL/x90vQDNoAcQnwqPC6RrPX7NW5hKi1cBLLP+a5/65+8H0BB6APHRA5awJr/mLTyNif0BV618et/+8s8nzAuoB1A/PYD4+H4BUqUHUD89gPjoAaRKD6B+egDx0QNIlR5A/fQA4lPsAZu/ePydH/724SdfNe3G+zvd93e6btR/Y/MXjx9+8lW1N/QAAtIDiI/9AaRKD6B+egDx0QNIlR5A/fQA4qMHkCo9gPrpAcRHDyBVegD10wOIz2AwePXq1UtIzqtXr/QAaqYHEKUBJCr0e4vG+W9o/Z2fkHKowgAAAABJRU5ErkJggg==" alt="" width="635" height="299" />

工厂类的目的是为了产生Sender对象,通过不同的参数传入产生不同的对象。

将工厂类中的工厂方法改为多个工厂方法即为多个工厂方法的设计模式

将工厂类中的工场方法改为static即为静态工厂方法设计模式

二、抽象工厂方法模式:接口-实现类、接口-工厂类

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABJ8AAAHgCAIAAACEo1uVAAAgAElEQVR4nO3d728c54En+PkrDRz45vLmgMG8uDVwGEE4wLgAwbyZeTH0jgJkuTcbwHO7uY4mAx1sZOSsVoiwzso2YwYatRK3YlJJKxTFFUWzY9oURbLuRZHdVV3VxSb7R1U9z+eD74t2s7pYlKuqn2/Xj/6LBAAAgPb7i7oXAABgzr7+9u0//3pXJLz8/N/2vjs+rXsLo7m0OwAgNM9efbey1hUJL//uJz3tjgraHQAQGu1OQo12RzXtDgAIjXYnoUa7o5p2BwCERruTUKPdUU27AwBCo91JqNHuqKbdBeu749P1Z4Pa7+wksoisPxt4bwMqaHcSarQ7qml3wfru+PRHv/xT7fsgkUXkR7/8k/c2oIJ2J6FGu6Oadhcs7U4CjnYHVJu93SVJUvpYpN5od1TT7oKl3UnA0e6AavNtd8X/HD45Se37SQk12h3VtLtgaXcScLQ7oNq82l3pzMemmfRakUVEu6Oadhcs7U4CjnYHVJul3WXns1J5imai3cnSo91RTbsLlnYnAUe7A6pVt7ubG0fJ/u7NyieTQqlLCp2t+Mz48/cOir+o/EmR6aLdUU27C9bs7S5xQbk0NdodUG1iu7t3kCRJstW/9MlkXmdm3t7dTpIkObiVnab0SZEpot1RTbsL1nzbXfE/h09OUvvuTwKOdgdUK2l3U/e6NOl8sv9ZOk3pPqrs+f56khQO2ZU+KVIV7Y5q2l2w5tXuSmc+Ns2k14osKNodUG1Su9veeHrpk8OZrMzxTTA9WDdW5EqfFKmMdkc17S5Ys7S77HxWXFAuzYt2B1SbdGbmzY2jpFDnSp9Myt77kmu8Cep1Mtdod1TT7oJV3e6Wd0H5mmvKZf7R7oBqc7yrSjrDsSezPyp1Po13QJl3tDuqaXfBmtjuln9B+ZprymXO0e6Aaov4NvPkeh9xisw12h3VtLtglbS7mi8o77qmXOYV7Q6oNmO7S2eykvmIc+x5kbqi3VFNuwvWpHZX2wXla649kLlFuwOqzX7sTqSZ0e6opt0Fa9KZmTVcUL6m18mco90B1bQ7CTXaHdW0u2DN8a4q6QzHnsz+qNRoMteUy7yj3QHVtDsJNdod1bS7YC3i28wTF5RLM6LdAdW0Owk12h3VtLtgzdju0pmsuKBcGhntDqim3Umo0e6opt0Fa/ZjdyKNjXYHVNPuJNRod1TT7oKl3UnA0e6AatqdhBrtjmraXbC0Owk42h1QTbuTUKPdUU27C5Z2JwFHuwOqaXcSarQ7qml3wdLuJOBod0A17U5CjXZHNe0uWNqdBBztDqim3Umo0e6opt0FS7uTgKPdAdW0Owk12h3VtLtgaXcScLQ7oJp2J6FGu6Oadhcs7U4CjnYHVCttdzc3jrLTbG88vfr+5+md/STZ6te+G5Roo91RTbsLlnYnAUe7A6pNbHf7uzfT/7y9u32dgqfdSc3R7qim3QVLu5OAo90B1S5vd2vdW1t6mrQv2h3VtLtgaXcScLQ7oNrV293TO/vDVx/cGr0q8/xWf5pX3dpKsr9l5d7BxY9Kf0V/PTm6c293O0mS5OjO7fp3sNLwaHdU0+6Cpd1JwNHugGpTnpm5fi/9Ue58y8xkuedvbSXr97LtbsKr7h1ketrTO/vp+Z+TfkV/PUnyfVKkKtod1bS7YC2v3Y0+lRRZUrQ7iFn3+cGl00xxV5XMO9ft3e3ccbP+evqf4893V7LH7ia9atToMtNMnLi/PiqZIpdnmnb3zdHJ1u7hTJsZraXdBau83d1Oz/1Ikjm+l2h3svRodxCt7vOD7/1o/Xs/Wv/hLzY/++r1pMkuO3b39M5+MnYcb8z6vfI3uHy7K3tV5heNfuPEibU7uVoq2t03Ryf3n+z+7Ye97/1o/Z33P73CdkVAtLtglbW7/vro/mBP7+zPqZJpd7L0aHcQre7zg+//7LfZUWxpzbvamZllx+gmPT/52F3xhU/v7F/2K7Q7uWKK7a50c9DuoqXdBauk3VW8D80S7U6WHu0OopW2u+F/Tqp5V7yryqTvObjCdXdjubWVbG8dbI/eHydNrN3J1TJsd9WfcWh30dLugjXp2N3Ed69zufeh9Xvp1d7J+I28RmeYHN3ZOBh7VWFWbggmc452B2HYPTjqPHw+ln/5/E/HJ6eTprn1i69u/r+Pi7MaG+n+6ul+cdcx1u6Ktz/JyL6FXbjknplJ7rPOewfDl1ROrN3J1fLvftL7+N9eVhy4Tr3z/qfDrWbsGryPNl4Ut7sFTcPyaXfBKr/u7t75leiZ72+tvFHYxdte/v7O2Zdkb/blhmCypGh3EIbu84Pi6LDz8PnuwdGkaW794qv/4//5t9K57R4cfbTx4q//y7/91Y9/c/szd42WMPO//+TLf3/3q+/9aP1vP+zdf7L7zdFJ6eaQbXfZBvjN0UnpRreIaT7aeHH/ye619w9cj3bXSlu7hxWXkqcq7pl5cdOwg1trl9zya/RpYvb0y7GXDH/khmCyrEzT7j776rVPEKGZPvnyVfbo3JWMnZmZ5Evdjx/8Id3wS8/MFAkgwzMzP/vq9Q9/sTmp5jXhzMy079W9FNHR7lrph7/YfPeDR9VH5C/5RoTbu9vpEbyJd/Ga3O7GLrTLtbvSWWl3MudUtLvhu927Hzz64S82Z9vUgIX4qx//Jnt07kqG7a601A1pdxJqindVKa152l20tLtW+uEvNtOtt+Jq2su+7+7i23gm3mpl9mN3w2h3MucU213xve3+k13tDpppxnb3Vz/+zaRSN6TdSaip+EaE7Fuhdhct7a6V0nY3/M/Smldsdzc3jkaXd48uJa+6UVh5u8t+s8L58bqS6+4y0e5kzhm2u4rzUrQ7aKxZ2l16tc+l511rdxJqpvk288++ev3RxovrbWJzpN3VQrur3/0nu8VrUscuQv3sq9fZn/71f378r492irPK1rx/f/erf/hvz8f2CLe2htNmD7KV3sWrot1lT8I8uHV7d/yOz+Oz0u5kzvmH//b80mvK//XRzl//58elt+ArvZHDgqbZPzyu2PwhTrO0uylpdxJqpml3DaHd1UK7q98y251IGGlRu3v3g0eLHsVC62h3IteOdkc17a4e+4fHHz96ee2XX+/MTJFg0qIzM5cwioXW0e5Erp0Wtbv7T3Yvvcc7c6fd1aN4Q+crmcddVURanBbdVUW7gyLtTuTaaVG7oxbaXT1mb3ezfiOCSJvTom9E0O6gaAkbhXYnoUa7o5p2V48Z292M32Yu0va06NvMtTuohXYnoUa7o5p2V48Z2900tDsJONO0u4bQ7qAW2p2EGu2OatpdPbQ7kVmi3QHVtDsJNS1qdx9tvBi7CTxLoN3VQ7sTmSUtancfP3qZ/YIEIEmST758tejtQruTUNOiducbEWqh3dWj9+LPf3Pndwv9FdqdBJwWtTugyD0zRa4d7Y5q2l1tSr9/eY60Owk42h202hLa3Zu3Z89efScSXp7vH7152453QO2uFtpdsLQ7CTjaHbTaEtrd2dnZEQTq7OxsoZvPvGh3tdDugqXdScBpUbvbPzyuexGgcZbQ7k5PTwcQom+++Ua7o4J2FyztTgJOi9rdux88cs9MGKPdwbVpd1TT7uqxf3j88aOXC/0V2p0EnBa1O9+IAEXaHVxbi9rd/Se7n331uu6liI52Vw/fiCAyS7Q7aDXtDq6tRe2OWmh39VhCu3vz9vTVn49rv7OTyCLy6s/HbbljmHYHRUvYKLQ7QqXdUU27q8cS2t3Z2dnbt2/rvqsTLMTbt2/b8t6m3UEttDtCpd1RTburx3La3XfffVf3LggW4rvvvmvLe5t2B7VoZ7vb63Q2HwwGg8HOaqffq3tpaCbtjmraXT20O5iFdgdUW3K7e3C3u3J3Z9a5dDeHM3lwt7vanXV+BKlF7e6jjRf3n+zWvRTR0e7qod3BLFrU7j5+9PL4pB2XCMLSfPLlq0VvF208dpdrdJmmB1ktane+EaEW2l09ei/+/Dd3frfQX6HdEbAWtTugqNn3zNzrdHqrd3sra90bD/cGg0HvYe/8hr3DutXdvLiFb6/TH6TTTJr4wd3z+Zz/9O5O+TwHO6sXcxsMBoN+/8ZaepYm5Gh3VNPuavPN0clC56/dETDtDlqt8e0uU7r6/RsXl8BdHFvL17DBYDBsdyUTDwbdzZXzJ/c6nV6nXzrPdLbZOjf2n3BOu6OadhesBrS77DuTK8WZJ+0OWq1p7W54JO3Gw71RB8v/aDTBqK3l5nDj4V7JxIPBqA1elLryycYP1pV0SBhod1xGuwtWs9qdK8WZqxa1u/3D47oXARqnae0ur9Duxq5/q253ZRfLpSdn5s7eLJnMsTumot1RTbsLVqPanSvFma8Wtbt3P3jknpkwpkXtruT6t37/RsWZmaWVrN+/0dlcHc62fDLX3TEV7Y5q2l099g+PP370cqG/YrZ2t9fpDE8a2Xww8frvzc7F87nydj7l5kW7847FnLWo3flGBChqU7vLnUg5uofK5XdVyTXAvU6nmz3iVzqZT0KZRova3f0nu5999brupYiOdlePpn8jwtibysTrvy/KXndzpVDkeg97mSedbcI8aXfQas1ud/VxFQNTaFG7oxbaXT0a2O7y15TvrF4ctRtMuv47V9IuHueuRrh40pXizJt2B622hI2ile1u9MbqY1Am0u6opt3Vo4Htrsx5x+tcfv13Zbtz7I550+6Aau1sd3A57Y5q2l09WtLuBumlAqsPJ13/XWh3mWvN82dmuu6OedLugGraHaHS7qim3dWj4e0udyrm3Z1B+fXfZe0ud4bnzsV33LlSnDnT7oBq2h2halG7+2jjxf0nu3UvRXS0u3o0vN3NnyvFmasWtbuPH708PjmteymgWT758tWit4tsu3vn/U/fef/T2R/85T9+8c77n25t73mwzAef916899PHHvz8iz+m63OL2p1vRKiFdleP3os/x9XuXCnOXLWo3QFF7pkJ16bdUU27q83+4fFC59+wdgfzpN1Bq2l3cG3aHdW0u2BpdwRMu4NW0+7g2rQ7qml3wdLuCFiL2t2ij9JDG2l3cG3aHdW0u2BpdwSsRe3u3Q8euWcmjFlOuzuEEH377bdteQfU7mqh3dXjm6OTRd8iNtvuPu+9eOf9T9/76WMPlvNga3vvnfc//ct//MKD+T74vPeide3ONyJA0RK2izMI10K3nTm6/2T3s69e170U0dHu6hHdNyLAXGl30Gq2C4AF0e7qod3BLLQ7aDUbBcCCaHf10O5gFtodAECRdlcP7Q5mod0BABRpd/VYTrt7+/btGwjR27dvtTsAaLKPNl4s+iaCFGl39VhCuwOa4ONHL49PTuteCmiWjWdf2y4geL4RoRbaXT16L/6s3QEQJ8e0IQbaXS20u9rsHx7XvQgAUAPtDmKg3dVCuwMAlkq7gxhod7XQ7gAWyFF6KNLuIAbaXS20O4AFeveDR0axMEa7gxhod7XQ7urxzdGJW8RCDIxioch2ATG4/2TXcHf5tLt6+EYEiIRRLBTZLgAWRLurh3YHkTCKhaKt3cO6FwEgTNpdPbQ7iIR2BwAsjXZXD+0OIqHdAQBLo93VQ7uDSGh3AMTJXVVqod3VQ7uDSHz86OXxyWndSwHNsvHsa9sFBM83ItRCu6tH78WftTsA4uSYNsRAu6uFdleb/cPjuhcBAGqg3UEMtLtaaHcAwFJpdxAD7a4W2h3AAn1zdFL3IkDjaHcQA+2uFtodwAK9+8Ejp2HDGO0OYqDd1UK7q8c3RyduEQsxMIqFItsFdTk5Pat7ESLiGxGW7PjkLNHu6uIbESASRrFQZLugLoPvTlbWuiJBJl3Jtbt6aHcQCaPYtni+f/TPv96V5eQ//vJ57csQT3755f7hGxcAn9PuJOCkK7l2Vw/tDiKh3bXFp5sHtb8xiywiP/jwmXY3pN1JwElXcu2uHtodREK7awvtTkKNdpel3UnASVdy7a4e2h1EQrtrC+1OQo12l6XdScBJV3Ltrh7aHTU6fHPy7NV3spz8p1/+4fe7h7UvRiTZOXjz7fHp9bYL7U5CjXaXpd1JwElX8lG7e3NyevjmRJaTR388eO/2k9oXI6rU9D7SREaxEmpmGcXaLiTUaHdZ2p0EnHQlH7W7wzcnH/yPFz/48JksJ//Xnc3alyGe/Hb7sKb3kSYyipVQ8wPtTqSQWbaL8Gh3EnDSlTzX7n7w4bPaF0tkEfl086Cm95EmMoqVUKPdiRSj3WVpdxJw0pVcu5Moot1lGcVKqNHuRIrR7rK0Owk46Uqu3UkU0e6yjGIl1Gh3IsVod1nanQScdCXX7iSKaHdZRrESarQ7kWK0uyztTgJOupJrdxJFtLsso1gJNdqdSDHaXZZ2JwEnXcm1O4ki2l2WUayEGu1OpBjtLku7k4CTruTanUQR7S7LKFZCjXYnUox2l9XudnfvIEkObtW+GNLUpCu5didRRLvLMoqVUNPYdndrK0m2+ouavwGfVEa7yypvd7d3ty8mWL93/uStrSRJSrbcmxtHSZIk+7s3K19e/uSMsbFLZdL1TbuTKKLdZWl3Emrm2+6uMLYrydM7+6PX5trd3Md8BnxSGe0uq6zd9deTZHvj6cpad2Xt6Z39863pfA8wvnH115Nke/8oswcofXn5PGeNjV0qk66y2p1EEe0uS7uTULOQdnf52K40k9rdAsZ8BnxSGe0uq6Td3d7dTo7u3B7/d7u1lSRbu3f2hxtsd2Wtu3LvINnfvbWR2QOUvnzCPGeNjV0qk67k2p1EEe0uS7uTUDP/djfN2G6KjNrdIsZ8BnxSGe0ua9Kxu+JR+nSzvZnf2G9tJdsbT/NPlr68fJ4ra93zj37ODbfcp3f2k/V7/fXz5zN7idHR/qM7GwdjLynMp7+eHN25l75kAfVSmp10bdDuJIpod1nanYSaBbS7acZ23dJhVvZszLFjd2VjvnkN+CbNypgv3mh3WeXX3d07HyRkP8o532yzn8hcPB7fA5S9vPzJ/FH9zHzSzfb8F93aSnLPZ/ce5xv1pPlkp5Hokq5y2p1EEe0uq8XtzjEKqcwi2t0UY7u0g+VfNbHdlY755jXgq5iVMV+80e6yKu6ZeX5J7fgHNE+HB/BvbhylG1fh852Sl5c/OX70vr9+/p+53cjozW5s+knPj+bTX5/jTVykbUlX8uW1O3cMkxqj3WWVtDu3C5MgspB2N/XYLs3wRxPb3XCyJLlsoHbFAV/VrIz54o12l3XJNyLc3t2++ORltNmeb2Kj7XHiHiDz8vInM++MQ+v3uhM39rF3vdxOoHQ+tvSok64Jl7Q7dwyTMKLdZRVGsW4XJoFkMe1uirHd2EhrinY3fNX2xtO5DfiKSzKalTFfvNHusi77vrvRpzljJ1Svb402tMmf7zwdv1J37MmJV97OeOxuGFt61ElX8unanTuGScuj3WWNj2LdLkxCyaLaXfXY7vbudmY4NeWxu5W17mjMN68BX/FHoxjzxRvtLqvY7obH5FfW0q0pcy50dhNOSs95Ln/5pHmOjY0zmbCxZ8fM55/dlFx3l4ktPeqkK/kU7c4dw6T90e6ySo/duV2YBJCFtbuqsV2+3fXXk6pjdxPGfPMa8FXMypgv3mh3WaXH7i4OZiTZN47C5bKjHxXfGctfXnhyZa2bf/NKsm2tbGPPvgke3Lq9u13+Jphkdw629GiTrgrTtDt3DJPWR7vLKrnuzu3CJIgsrt1Vj+0uLqJLzt+PKo/dTRjzzWvAN2lWxnzxRrvLuuzMTJEWJ13Jp2p37hgmbY92lzXpnpluFyZtz3zbnUgY0e6ytDsJOOlKPl27c8cwaXm0u6yqUazbhUmbo92JFKPdZWl3EnDSlXzKdueOYdLuaHdZlaNYtwuTFke7EylGu8vS7iTgpCv51O3OHcOkzdHussZGsW4XJsFEuxMpRrvL0u4k4KQr+fTtzh3DpMXR7rLK7x5xzu3CpMXR7kSK0e6ytDsJOOlKfoV2545h0t5od1lGsRJqtDuRYrS7LO1OAk66kl/S7kTCiHaXZRQroUa7EylGu8vS7iTgpCu5didRRLvLMoqVUKPdiRSj3WVpdxJw0pVcu5Moot1lGcVKqNHuRIrR7rK0Owk46Uqu3UkU0e6yjGIl1Gh3IsVod1nanQScdCXX7iSKaHdZRrESarQ7kWK0uyztTgJOupJrdxJFtLsso1gJNdqdSDHaXZZ2JwEnXcm1O4ki2l2WUayEGu1OpBjtLku7k4CTruTanUQR7S7LKFZCjXYnUox2l6XdScBJV3LtTqKIdpdlFCuhRrsTKUa7yzp8c/qDD5+JBJl0JdfuJIpod1lGsRJqfqDdiRQyy3YRnu+OT785OhEJMt8dnybanUQS7S7LKFZCzSyj2MM3J89efScSXnYO3mh3Q2dnZwMIVLqSa3cSRbS7LO1OQs0s7e709PQIQnR8fHx2djbf95H20u4IWLqSa3cSRbS7LO1OQs0s7e7t27d1vy/DQhweHmp3Q9odAUtXcu1Oooh2l6XdSajR7qBIu8vS7ghYupJrdxJFtLus5/tH//zrXZHw8ssv97U7GKPdZWXb3c8ePvunB5s7r77++Rd//KcHm1vbex4s88Hjrd1fPv6TBzM+eLy1O1yl05Vcu5Moot1lnZ2dnUCITk9Prz2K1e4IlXaXpd0150HtvSiMB1Xt7ujtaU0bGrBURrGEapZRrO2CUGl3Wc7MJGDpSv4X2dX98PCw7qWChXj79m1N7yNNZBRLqCJrd3udzuaDwWAw2Fnt9Ht1Lw2Npd1laXcELF3JtTuioN1ltXAUC1NpUbt7cLe7cndnpll0N4dzeHC3u9qdw1IRJO0uS7sjYOlKrt0RBe0uS7sjVC1qd7PLNbpM04Mx2l2WdkfA0pVcuyMK2l1W60axMKWa2t1ep9NbvdtbWeveeLg3GAx6D3vnt3QaNq7u5sVNnnqd/iCdZtLED+6ez+f8p3d3yibbWb2Y1WAwGPT7N9bSszRhnHaX1c525zRsppKu5NodUdDusrQ7QlVfu8sUuX7/xsXw6+LwWr6JDQaDYbsrmXgw6G6unD+51+n0Ov1J88zWubH/hBHtLmv57c5p2CxNupJrd0RBu8uqu91lh6E+j2SeltbuhkfSbjzcG3Ww/I9GE4zaWm4ONx7ulUw8GIza4EWpK5ls/GBdSYGElHaX1cZjd07DZkrpSt6odmfMx6Jod1kNanc+j2SuajwzM9fuxsZe1e2ubKCWnpyZO3tzfDLH7piWdpc1W7tzGjaNlq7kTW13xnzMlXaX1Zx25/NI5qsJ7a5k7NXv36g4M7N0oNbv3+hsrg5nWzKZAR/T0u6yZm53TsOmudKVvKHtzpiP+dLusma9vuj8U8nNB6UfWw52Vtc2OxfP5zbk8yk3L7Z0w1PmrBHtLnci5ejD+8s/zs8NCvc6nW72iF9xMm+UTEm7y7pSu8ufgz1wGjYNl67k82p3xnw0mnaXdf1R7NgIsvSTyMHO6nDD726uFDbq3sNe5kmfRzJPUX0jgpNcmJJ2lzX7mZlOw6ax0pV8Tu3OmI9m0+6yZrh7xM7qxSc4g9KPGAeD/AZ78Tj3hnfxpM8jmbe42t1oW/MuSRXtLmuO7c5p2DRNupJfv90Z89Ei2l3WzKPY8+29U/5J5NRbus9xmLfI2h1MRbvLmme7cxo2DZOu5PO97s6Yj4bS7rLmMYrd63S6qw9LP0Es29IzH2fmj9L7PJJ50u6gSLvLauM3IjgNmymlK/nc76pizEcTaXdZ1x7F5g7Lj924ebTNlm3puaP9Oxffd+LzSOZMu4Mi7S6rle3OadhMJ13J59PujPloOO0uq0GjWJ9HMldzaXd7+19/3nvxm69eelD6YDAYfN578XnvhQdLfrC3//Vvvno5/YP+y9ezbxfhaWe7g6mkK3mjvhEhw5iPudLushrU7nweyVzNpd31X75+76eP/+7D33lQ+mAwGLz308fv/fSxB0t+0H/5+u8+/N30D3712xezbxfh0e4IWLqSN7XdGfMxV9pdVpPaHcyTMzOhSLvL0u4IWLqSN7bdwTxpd1lGsYRKu4Mi7S5LuyNg6Uqu3REF7S7LKJZQaXdQpN1laXcELF3JtTuioN1lDUexW9t777z/6V/+4xceTPPgnfc/HQwGHtTyYGt77y//8YtJD37+xR/TVVq7gyLtDqJS3u62tvc+773Y2t4L6cGX/f/Zf/nag6U9eLy1u/Pq63of7O1/na7S2l2WUSyhmmUUe3p6+gZCdHx8rN1BPMrb3c+/+ON7P3388y/+GNKDn/z3zV/99oUHS3vwH/7r08dbu/U+GN4PWrvL0u4IlWMUAETOmZlEQbvL0u4IlXYHQOS0O6Kg3WVpd4RKuwMgctodUdDusk5OTg4hREdHR9odADHT7oiCdpd1BkGrewsDgNrk2t0pBMqADwCA4P3F5ZMAAADQeNodAABACLQ7AACAEGh3AAAAIdDuAAAAQqDdAQAAhEC7AwAACIF2BwAAEALtDgAAIATaHQAAQAi0OwAAgBBodwAAACHQ7gAAAEKg3QEAAIRAuwMAAAiBdgcAABAC7Q4AACAE2h0AAEAItDsAAIAQaHcAAAAh0O4AAABCoN0BAACEQLsDAAAIgXYHAAAQAu0OAAAgBNodAABACLQ7AACAEGh3AAAAIdDuAAAAQqDdAQAAhEC7AwAACIF2BwAAEALtDgAAIATaHQAAQAi0OwAAgBBodwAAACHQ7gAAAEKg3QEAAIRAuwMAAAiBdgcAABAC7Q4AACAE2h0AAEAItDsAAIAQaHcAAAAh0O4AAABCoN0BAACEQLsDAAAIgXYHAAAQAu0OAAAgBNodAABACLQ7AACAEGh3AAAAIdDuAAAAQqDdAQAAhEC7AwAACIF2BwAAEALtDgAAIATaHQAAQAi0OwAAgBBodwAAACHQ7gAAAEKg3QEAAIRAuwMAAAiBdgfROT07q4tx2hgAAB7NSURBVHsRYFG+fXNa9yIAQG20O4jOp5sHK2tdkfDygw+fHb45qXsLA4DaaHcQHe1OQo12B0DktDuIjnYnoUa7AyBy2h1ER7uTUKPdARA57Q6io91JqNHuAIicdgfR0e4k1Gh3AEROu4PoaHcSarQ7ACKn3UF0Zm93SZKUPhapN9odAJHT7iA68213xf8cPjlJ7R1AQo12B0DktDuIzrzaXenMx6aZ9FqRRUS7AyBy2h1EZ5Z2l53PSuUpmol2J0uPdgdA5LQ7iE5Fu7u5cZTs79687MmkUOqSQmcrPjP+/L2D4u8qf1Jkumh3AEROu4PolLe7ewdJkiRb/cufnOOZmbd3t5MkSQ5uZacpfVJkimh3AEROu4PojLe7q/S6NOl8sv9ZOs2k1xae7K8nSeGQXemTIlXR7gCInHYH0Sltd9sbTy9/MnO8bmWOd1VJD9aNFbnSJ0Uqo90BEDntDqJTembmzY2jpFDnSp9cmXAzleQad1XR62Su0e4AiJx2B9GZ411V0hmOPZn9UanzadxVReYd7Q6AyGl3EJ1FfJt5co17ZorMO9odAJHT7iA6M7a7dCYr+WvwViZ0PJFlRrsDIHLaHURn9mN3Is2MdgdA5LQ7iI52J6FGuwMgctodREe7k1Cj3QEQOe0OoqPdSajR7gCInHYH0dHuJNRodwBETruD6Gh3Emq0OwAip91BdLQ7CTXaHQCR0+4gOtqdhBrtDoDIaXcQHe1OQo12B0DktDuIjnYnoUa7AyBy2h1ER7uTUKPdARA57Q6io91JqNHuAIicdgfRqb/d3TtIkoNbdTcBCS/aHQCR0+4gOsV2d2sr+/OjO7fnMtR+emc/Sbb6JT/S7mQx0e4AiJx2B9Epb3cXNezmxtGcCp52J8uOdgdA5LQ7iE51u1tZ668nyfq9RY7CtTtZTLQ7ACKn3UF0pm53/fXk6M693e0kyRzNe3pnfzin84Z2aytJ9ndvDmd4Ud5ys72dzidJkqM7G9l2VzLDCb9a5JJodwBETruD6FS3u1tbyUXL6q8nSf4gW+5ky9GU9w7G6t/2xtP8bLMvzM42N8ObG0cXLbH4q0Uuj3YHQOS0O4jOZXdVyR5Ay5+iOX5G5XCCUaNbub27fdH0Ru0u82RuPmPPp4fsbpf9apEpot0BEDntDqJz2ZmZw0zf7kaH3TLH3zKzHXthrt2NuzgpVLuTK0e7AyBy2h1EZxHt7uIo3NM7+6OXXP3Y3eRfLTJFtDsAIqfdQXSu3+7Sy+Gy191lbqZyayvZ3jrYztS/zGz760n21M2k9Lq7yl8tcnm0OwAip91BdGZod92L+50kSZK/T+ZaekQuN58J98w8uHV7d7v8nplJ9oYu2p1cNdodAJHT7iA6xXYnEka0OwAip91BdLQ7CTXaHQCR0+4gOtqdhBrtDoDIaXcQHe1OQo12B0DktDsIx2dfvf6bO7/7+NHL/cPjism0Owk1l7a7z756/cNfbHYePp/3xgcAjaDdQTg6D5///b/+fu3+1v/2H7/4/s9+O6nmaXcSaia1u7TUfe9H63/7Ye/HD/7w/Z/9dvGbIwDUQLuDcHQePh8elOg+P5hU87Q7CTVj7S5b6u4/2f3m6CTdNLQ7AEKl3UE4su1uqFjztDsJNWm7Ky112S1CuwMgVNod5Pzth7133v/0/pPd4TPPX3+7cuvzd97/dCwNnKa03Q1tPPv63Q8evfP+p//3L/9Q+yhcZBH5/v+39b/+aP17P1rvPHw+VuqGfr21/7/8w2djm89Y3/v+z35b3MTmNc27Hzw6PjkdTvPDX2zOcZqPNl5M2gMAEAPtDnL+6se/2T04qnsprqm03R2fnH7y5au//9fff+9H63//r7//5MtXv/r9fu2jcJFF5AcfPvvtn/784wd/+Ksf/+av/8u/fbTxorg5B3zs7v6T3R/+YrPupQCgTtod5ITU7obnp6WlbvgxvzMzJdRkr7vb2j1Ma97/2elmLz3V7gAImHYHOQG0u7GLjrLnbqW0Owk1pffM7L34c/bS00++fKXdARAq7Q5yWt3uPtp48c77n5beSSJLu5NQU/19d8M7DP3Nnd8tZhOsmXYHgHYHOa1ud0mSVJS6Ie1OQs2l32Y+/WbSRtodANod5Hz86GXxVMbAaHcSaqZsd6F6/vrbjWdf170UANRJu4PoaHcSaiJvdwCg3QEQDu0OgJhpdxCdt2/fDiBEh4eHZ2dndW9hAFAb7Q5yhl+KFTDtjlBF3u6OT05DvWEMAFPS7iDn3Q8etfqemdPQ7ghV5O3u/pPdtftbdS8FAHXS7iCn7d+IMA3tjlBpd74RASBy2h3kRNXudl59/U8PNn/28JkH0zz4pwebg8HAg1oe7Lz6+mcPn0168HhrV7tLtDsAtDsYo915oN018IF2Nw3tDgDtDnKiancQGO1OuwOInHYHOdodtJd2p90BRE67gxztDtpLu9PuACKn3UHOx49eHp+c1r0Ui6XdEarI293z199uPPu67qUAoE7aHURnKe1uZ3Vt80Hh2d7D3o2He4v/7ZcsRoNdaYH3Op104p3VTr+3uIVqj8jbHQBodxCdJrS7B3e7K3d3qmfx4G53Za27stadoRAutN3tdTq9Tv/8P+axtIOrLXB3c/hv+OBud7U7w68NhXYHQOS0O4hOE9rd5bqbKxfHox7cvXZDW1a7m8/SDq60wLlGl2l6MdPuAIicdgc5+4fHdS/Cws3Q7nZW1zY7D3v5g1TZQjJ8XDrlqN2Nal53M51mZW10HOz8+cLZhr2LGV40mdxvyVWd88k2h8tWeO0grWerd3vFA27DA3Era910MQov3+t0MhNMtbQzLvDY0u6sZv/F+v0bLTsHdSEib3fHJ6ffHJ3UvRQA1Em7g5x3P3jknpmT7azmSl3aLia1u4sp+/0bFz2k0O7yFSUvrVij3tXv3xgdH0ur0c7qsPx0N1dGv3r0686fLHnt4LyhFQ95jSa+mNXEl4+fmVm5tDMu8NjSjh3la90VhgsRebu7/2R37f5W3UsBQJ20O8jxjQhjernjb7kKkalY5cfuClMW2l3ZIa+89BBZr9PPHMsqX56Lx7l5nj9Z9trBWD0bKbS7qV9evbQT/q2mXeD8rxs/WFfVk+Oh3flGBIDIaXeQo91VWn67O3/5jYd7vYe9wnG2q5SlksvSJrS79AhbppVd6eWTl3bGBR77dY7dldDutDuAyGl3kKPdVSo933JndW1U3laudGZm5kdjeg972fMnV7ull5aVlaX8rxud6FhSfia0u+7m+K1fLnv5dEs74wIX253r7sZpd9odQOS0O8jR7ipdclOQGw/7V72rSuYUxLGiNTqANjyKVZi49LBh9mzSnYtvhCv9RZPPzMycFZkpruPLef5kp9+bamlnXODxpXXPzCLtTrsDiJx2BznaXaUoTv9LT608/48mtybfd1eg3Wl3AJHT7iBHu6sURbvLH7tr8t9bfpVjzLQ77Q4gctod5Hz86OXxyWndS7FYS/k2c6hB5O3u+etvN559XfdSAFAn7Q6io90RqsjbHQBodxAd7Y5QaXcARE67g+hod4RKuwMgctod5OwfHte9CAun3RGqyNvd8cnpN0cndS8FAHXS7iDn3Q8euWfmPJTfxXH4NXfUZO/i+/R2Vjv9Xt1LM3eRt7v7T3bX7m/VvRQA1Em7gxzfiDAnl7S7B3e7l32P3F6n053wReeXmGLmC5X92vHr/xWDRfwhoX9FnnbnGxEAIqfdQY52NyezH7vLdKTuZrO/d27MWLtr0F+Ra3RN/qL269LutDuAyGl3kKPdVdpZXdvsPOylB6Muelq2yOW+X7sw5ajdjWped3PCoa1sRxr9it7FPHPNJD+T7G8Zm/jB3dzCpM8XJtvrdHqrd3vZJR++fGX4Reedfq/8tdkJyv+K8j+k8E8x7z9kZzX7j9zv36i7bc6ddqfdAUROu4Mc7a7Szmqu1KVVYVK7u5iy379RVldK+kZO/qhXepFYv3/j4mqxzGGo8Zmcz7x04uGshvMvmWyv0yk7JXI05cVvLF+eycfuhpe6lbyw5J9i3n/I2AHV8uOrrabdaXcAkdPuIEe7G9PLHX/L9YFMLSk/dleYstDusoVn3NhBsNzC5A4JFmaSzrx84kIxK5ssW88yCu1uwq+YcN1dZiFLXlj2TzHnP2T8YF1FtW4r7U67A4icdgc52l2lJbe7tHvsdTrd0QmKxUNqFe2u7Lqy9JzG3EmP45NNaHeDndV8xZrwK0qP3Y3+ivIXVre7+fwhjt0FTrsDQLuDnI8fvTw+Oa17KRZrPmdmjs633FldG5W3lSudmZn5UUGmmQwPOpVeKlaYSWbmZe2l37/R2Vwtzrz0V2d1N8dvCVP+KyacmZmduPjCsn+Kef8hrrsL3PPX3248+7rupQCgTtodRGded1XJ3X3x/IhW/6p3VcmcT1hxV5XRTURKpx978rKZ73U6k86THB5nm3BmZubUx0yhnbA843dVKdwKpXAPlcvvqjLbH+KemQAQNu0OojOvMzNjk+1mba1Gvu8OAIKm3UF0tLtryh27a+m/Q/mFkcHQ7gCInHYHOfuHx3UvwsIt5dvMoQaRt7vjk9Nvjk7qXgoA6qTdQc67Hzxyz0xoqcjb3f0nu2v3t+peCgDqpN1Bjm9EgPbS7nwjAkDktDvI0e6gvbQ77Q4gctod5Gh30F7anXYHEDntDnJiaHdnZ2enECjtru6lAKBO2h3kxNDugCBpdwBod5Cj3QEtpd0BoN1Bzr98/qfjk9O6lwLgyp6//vaTL1/VvRQA1Em7AwAACIF2BwAAEALtDgAAIATaHeR8c3RS9yIAXJM9GEDktDvIefeDR/uHx3UvBcCVffLlq7X7W3UvBQB10u4gxzciAC3lGxEA0O4gR7sDWkq7A0C7gxztDmgp7Q4A7Q5ytDugpbQ7ALQ7yNHugJbS7gDQ7iBHuwNaSrsDQLuDnH/5/E/HJ6d1LwXAlT1//e0nX76qeykAqJN2BwAAEALtDgAAIATaHQAAQAi0O8j55uik7kUAuCZ7MIDIaXeQ8+4Hj/YPj+teCoAr++TLV2v3t+peCgDqpN1Bjm9EAFrKNyIAoN1BjnYHtJR2B4B2BznaHdBS2h0A2h3kaHdAS2l3AGh3kKPdAS2l3QGg3UGOdge0lHYHgHYHOf/y+Z+OT07rXgqAK3v++ttPvnxV91IAUCftDgAAIATaHQAAQAi0OwAAgBBod5DzzdFJ3YsAcE32YACR0+4g590PHu0fHte9FABX9smXr9bub9W9FADUSbuDHN+IALSUb0QAQLuDHO0OaCntDgDtDnK0O6CltDsAtDvI0e6AltLuANDuIEe7A1pKuwNAu4Mc7Q5oKe0OAO2uBb7+9u2zV9/JcvKffvmH3+8e1r4YkWTn4M23x6d1b2Es0OnZWe2rWTz5bHP/zq9f1L4Y8eT07KzuLQxgnHbXAv/8692Vta5IePnBh88O3/jy5cDVvpqJLCiD7+y+gMbR7lpAu5NQo93FoPbVTGRB0e6ABtLuWkC7k1Cj3cWg9tVMZEHR7oAG0u5aQLuTUKPdxaD21UxkQdHugAbS7lpAu5NQo93FoPbVTGRB0e6ABtLuWkC7k1Cj3cWg9tVMZEHR7oAG0u5aQLuTUKPdxaD21UxkQdHugAbS7lpAu5NQo93FoPbVTGRB0e6ABtLuWkC7k1Cj3cWg9tVMZEHR7oAG0u5aQLuTUKPdxaD21UxkQdHugAbS7lpAu5NQo93FoPbVTGRB0e6ABtLuWkC7k1Cj3cWg9tVMZEHR7oAG0u5aQLuTUKPdxaD21UxkQdHugAbS7lpAu5NQo93FoPbVTGRB0e6ABtLuWmCh7e7WVpJs9Wt/j5Q4o93FoPbVTGRB0e6ABtLuWqDY7m5tJUlS0spubhwlSZLs796sekN6emd/9Npsuzuf7ZDWJwuOdheDkv/1t3e3L366fu/8ySvs1ipePmT3JYuPdgc0kHbXAhPbXXJwK/d8fz1JtvePZmp3MwyJHAaUq0a7i0Hh/3t/PUm2N56urHVX1p7e2T/fj029W5v88tn2P/ZgctVod0ADaXctUN7utnbv7A+HON2Vte7KvYNkf/fWxqXtrjgr7U7qiXYXg/H/77d3t5OjO7fHV4Zpd2tVL9fuZKnR7oAG0u5aYEK769/MF7lbW8n2xtOb4+3u6Z394ZxKPuSeot2VzGH8+a3dzDTZmZS+tr+eHN25l55bdXTndvfWVu60q8KfIMFGu4tB4f97fz0p2dVMvVurennZala6F8ruvvr5aYbzmbTry+3BtvftvuKNdgc0kHbXApPaXe4z7IvH+bHF0zv7+etStvorV2t35XMont65fq/48sIpoOcjpP56kuRGS/cOktGH8U/HP7yXcKPdxaDkf/29g/RH2S196t1a5cvHf1fpHqxk91WYw6TdV3d8D2b3FXG0O6CBtLsWmNjuMiOJmxtH6UCk4pPj4Y+q2l3GcEhUnEPpyVHjo6t7B4UPvNN5Dh8MkxkSTTjtSoKMdheDSf/3z2+XMn5OwbS7tZKXZxR3X6P5THNu58TdV7ewB7P7ijfaHdBA2l0LTG53wyHI6PPp8WFQ5uZySZJc3u6KH36XzaEw9Cl7+RXa3WixndcUVbS7GFStA7d3ty8OwV1ht1b98rJpRvZ3b5btvsbncIV2Z/cVb7Q7oIG0uxaoanfpOGNrNBC5OX77gdEoZKpjd2PDowlzmPexu+GTudOoJPhodzGoXAdGB76m3a1d/vJMSvdgcz5217X7ijbaHdBA2l0LVLa78S+Jmtzu+uvJ1Y/dTZjDxOvuciOw3M0PMj8tbXeT7ocuIUe7i8HY//Th+ZYra7mL1qbcrU3z8lHK92CTr7ubcO+W4o/G9mB2X3FGuwMaSLtrgep2l7+mf/xD7otLU5IkObqzcXCNMzNL57Cy1r24tUCSJBevGp4BNZpJZprKsdHFH+KO5HFFu4tB8f975hq50b5r+t3a5S/PZMIerLD7WivuwUp3X93yPZjdV5TR7oAG0u5aoNjuwowbEsQX7S4Gta9my4jdV5TR7oAG0u5aIJJ254YEEUa7i0Htq9kSYvcVZ7Q7oIG0uxaIo935nqgYo93FoPbVbPGx+4o02h3QQNpdC8TR7iTGaHcxqH01E1lQtDuggbS7FtDuJNRodzGofTUTWVC0O6CBtLsW0O4k1Gh3Mah9NRNZULQ7oIG0uxbQ7iTUaHcxqH01E1lQtDuggbS7FtDuJNRodzGofTUTWVC0O6CBtLsW0O4k1Gh3Mah9NRNZULQ7oIG0uxbQ7iTUaHcxqH01E1lQtDuggbS7FtDuJNRodzGofTUTWVC0O6CBtLsW0O4k1Gh3Mah9NRNZULQ7oIG0uxbQ7iTUaHcxqH01E1lQtDuggbS7FtDuJNRodzGofTUTWVC0O6CBtLsW0O4k1Gh3Mah9NRNZULQ7oIG0uxZ4sv3NP/96VyS8/PLLfe0ueLWvZiILypu3p3VvXgDjtLsWODs7O4EQnZ6enp2d1b2FsVh1r2WwKHZfQANpdy3w5s2bAYTo8PDQ8Ch4da9lsCh2X0ADaXctoN0RKu0uBnWvZbAodl9AA2l3LaDdESrtLgZ1r2WwKHZfQANpdy2g3REq7S4Gda9lsCh2X0ADaXctMGx3/Zev3/vp47/78HceXPXBYDB476eP3/vpYw+W/KD/8vXfffi7sQePt3bTVVq7i8FwKPwf/uvT9376+PHWbo0PfvXbFz/575seLP/Bz7/448+/+GMAD3712xfaHdBk2l0LDNvd3v7Xn/de/Oarlx5c9cFgMPi89+Lz3gsPlvxgb//r33z1cuzBzquvtbt4DIfCj7d2P++92Hn1dY0P+i9ff9n/nx4s/8HW9t7W9l4AD/ovX2t3QJNpdy3gzExCpd3FoO61DBbF7gtoIO2uBbQ7QqXdxaDutQwWxe4LaCDtrgW0O0Kl3cWg7rUMFsXuC2gg7a4FltLudlbXNh8Unu097N14uLf4337JYjTYlRZ4r9NJJ95Z7fR7i1uo9tDuYrCUVcke7HrswWZi9wU0kHbXAk1odw/udlfu7lTP4sHd7spad2WtO8NwaqFjo71Op9fpn//HPJZ2cLUF7m4O/w0f3O2udmf4taHQ7mKwlFXJHux67MFmYvcFNJB21wJNaHeX626uXHya++Dutcc3yxobzWdpB1da4Nx4KDNOipl2F4OlrEr2YNdjDzYTuy+ggbS7Fpih3e2srm12HvbyH/Fm386Hj0unHI2NRoOk7mY6zcra6FPk8+cL5+r0LmZ4MQ7I/ZbcQOF8ss3hshVeO0gHN6t3e8WPq4cfY6+sddPFKLx8r9PJTDDV0s64wGNLu7Oa/Rfr92+07AyuhdDuYjDDCmIPZg/WaHZfQANpdy0wW7vLDonS9+ZJY6OLKfv9Gxfv4oWxUf4NPi8doIxGLf3+jdGny+nAYmd1OHTobq6MfvXo150/WfLawfn4pviB8Wjii1lNfPn4eU2VSzvjAo8t7dhn5K27PmchtLsYzLCC2IPZgzWa3RfQQNpdC1yp3fVyn17n3oAzA5TyT74LUxbGRmUfGOelHzD3Ov3MJ8Hly3PxODfP8yfLXjsYG9yMFMZGU7+8emkn/FtNu8D5Xzf+UXfVKDMe2l0MrrRK2IPZg7WI3RfQQNpdC8x4ZuZyx0bnL7/xcK/3sFf4lPoqQ42SizomjI3Sz6czY5orvXzy0s64wGO/ziffJbS7GMywgtiDXf5ye7Aa2X0BDaTdtcB8zswcna20s7o2GvpkztWZ4rymzI/G9B72smcfrXZLL8woG2rkf93oNKGSocOEsVF3c/zGCZe9fLqlnXGBi2MjV62M0+5iMMMKYg9W/nJ7sIaw+wIaSLtrgXndVaV4Sf2Nh/2r3pMgcwLP2DBl9PHz8DPgwsSlH7pnz8Xaufg+pdJfNPm8psw5RZlh3/hynj/Z6femWtoZF3h8ad1xrki7i8EMK4g9mD1Yo9l9AQ2k3bXAvM7MDFV6YtL5fzR5zOHbogq0uxjMsILYgzWJPViB3RfQQNpdC2h3l8h98t3kv7f8GqGYaXcxmGEFiWNLsQdrLbsvoIG0uxZYyreZQw20uxjUvZbBoth9AQ2k3bWAdkeotLsY1L2WwaLYfQENpN21gHZHqLS7GNS9lsGi2H0BDaTdtYB2R6i0uxjUvZbBoth9AQ2k3bWAdkeotLsY1L2WwaLYfQENpN21wFLaXfk90IZfEkVN9i6+jWpntdPv1b00c6fdxWApq5I9WDMFvgez+wIaSLtrgSa0uwd3u5d9C9Nep9Od8DXBl5hi5guV/dLe6/8Vg0X8IaF/wZR2F4OlrEr2YMPH9mDLY/cFNJB21wJNaHdTyIwwupvN/tamMWNjowb9FbnxUJO/5vi6tLsYLGVVsgcrPG7AXxH8HszuC2gg7a4FZvw2887DXvpR7sUoJzsMyn07bWHK0dhoNEjqbk74YDg7whj9it7FPHPv6/mZZH/L2MQP7uYWJn2+MNlep9NbvdvLLvnw5SvDrwnu9Hvlr81OUP5XlP8hhX+Kef8hO6vZf+R+/0bdY7W50+5iMMMKYg9mD9Zodl9AA2l3LTBbu8sOidI32kljo4sp+/0bZW/2Je/WOfnPjNNLLPr9GxfXWmQ+xB2fyfnMSycezmo4/5LJ9jqdshOKRlNe/Mby5Zn8yffwQpGSF5b8U8z7Dxk7HFF+dKLVtLsYzLCC2IPZgzWa3RfQQNpdC1yp3fVyn17n3k0zb+rln3wXpiyMjbLDhXFjHyHnFib3gXphJunMyycuDGvKJssObjIKY6MJv2LCVSuZhSx5Ydk/xZz/kPGPuisGpm2l3cXgSquEPdiIPVjj2X0BDaTdtcCMZ2YucWyUvnPvdTrd0ek9xQ+kK8ZGZVdlpGcE5U4ZGp9swthosLOaH6BM+BWln3yP/oryF1aPjebzh4T/ybd2F4MZVhB7MHuwRrP7AhpIu2uB+ZyZOTpbaWd1bTT0WbnSeU2ZHxVk3teHH9mWXmhRmElm5mXv/f3+jc7manHmpb86q7s5fkOF8l8x4bym7MTFF5b9U8z7Dwn/qhXtLgYzrCD2YPZgjWb3BTSQdtcC87qrSu7eZeefB/evek+CzNk4FfckGF2CXzr92JOXzXyv05l0ltHwU+oJ5zVlThzKDAcnLM/4PQkKNxIo3IHg8nsSzPaHBH/HOe0uBjOsIPZg9mCNZvcFNJB21wLzOjMzNtmRTVsHFqF/W5R2F4MZVhB7MHuwRrP7AhpIu2sB7e6acp98t/TfofyyomBodzGYYQUJc7Wflj1Y49l9AQ2k3bXAUr7NHGqg3cWg7rUMFsXuC2gg7a4FtDtCpd3FoO61DBbF7gtoIO2uBbQ7QqXdxaDutQwWxe4LaCDtrgW0O0Kl3cWg7rUMFsXuC2gg7a4FtDtCpd3FoO61DBbF7gtoIO2uBY6Pjw8hREdHR4ZHwat7LYNFsfsCGki7a4EzCFrdWxgLVPfKBYtV9xYGME67AwAACIF2BwAAEIL/H/3nEeou49aBAAAAAElFTkSuQmCC" alt="" />

特点是:

工厂类实现某个接口,利于以后扩展,比如可以增加BlueTooth的工厂类。

工厂设计模式是抽象工厂设计模式的一个特例。

三、单例模式

单例对象(Singleton),保证在一个JVM中,该对象只有一个实例存在。

饿汉模式:类加载的时候就会创建,加载类时比较慢,但运行时获取对象的速度比较快,线程安全

/*
* 类型:饿汉模式
*/
public class Singleton {
//1.将构造方法私有化,不允许外部直接创建对象
private Singleton(){
} //2.创建类的唯一实例,使用private static修饰
private static Singleton instance=new Singleton(); //3.提供一个用于获取实例的方法,使用public static修饰
public static Singleton getInstance(){
return instance;
}
}

懒汉模式:类加载的时候不去创建,加载类时比较快,第一个用户获取时再去创建实例,第一次获取对象的速度比较慢,线程不安全

/*
* 懒汉模式
*/
public class Singleton2 {
//1.将构造方式私有化,不允许外边直接创建对象
private Singleton2(){
} //2.声明类的唯一实例,使用private static修饰
private static Singleton2 instance; //3.提供一个用于获取实例的方法,使用public static修饰
public static Singleton2 getInstance(){
if(instance==null){
instance=new Singleton2();
}
return instance;
}
}

四、建造者模式

参考:

http://www.cnblogs.com/BeyondAnyTime/archive/2012/07/19/2599980.html

http://www.cnblogs.com/devinzhang/archive/2012/01/06/2314670.html

1. builder:给出一个抽象接口,以规范产品对象的各个组成成分的建造。这个接口规定要实现复杂对象的哪些部分的创建,并不涉及具体的对象部件的创建。

2. ConcreteBuilder:实现Builder接口,针对不同的商业逻辑,具体化复杂对象的各部分的创建。 在建造过程完成后,提供产品的实例。

3. Director:调用具体建造者来创建复杂对象的各个部分,在指导者中不涉及具体产品的信息,只负责保证对象各部分完整创建或按某种顺序创建。

4. Product:要创建的复杂对象。

public interface Product { }

public interface Part { }

//Builder接口
public interface Builder {
    void buildPartA();
    void buildPartB();
    void buildPartC();
    Product getResult();
  } //具体建造类,不同的类对于不同的Part有不同的实现方法
public class ConcreteBuilder implements Builder {
    Part partA, partB, partC;     public void buildPartA() {
      //这里是具体如何构建partA的代码
    };
    public void buildPartB() {
      //这里是具体如何构建partB的代码
    };
     public void buildPartC() {
      //这里是具体如何构建partB的代码
    };
     public Product getResult() {
      //返回最后组装成品结果
    };
  } //建造者,产生最终的Product
public class Director {
    private Builder builder;
    public Director( Builder builder ) {
      this.builder = builder;
    }
    public void construct() {
      builder.buildPartA();
      builder.buildPartB();
      builder.buildPartC();
    }
  }
//测试代码:
ConcreteBuilder builder = new ConcreteBuilder();
Director director = new Director( builder );
director.construct();
Product product = builder.getResult();

五、原型模式

参考:http://blog.csdn.net/zhengzhb/article/details/7393528

原型模式的优点及适用场景

使用原型模式创建对象比直接new一个对象在性能上要好的多,因为Object类的clone方法是一个本地方法,它直接操作内存中的二进制流,特别是复制大对象时,性能的差别非常明显。

使用原型模式的另一个好处是简化对象的创建,使得创建对象就像我们在编辑文档时的复制粘贴一样简单。

因为以上优点,所以在需要重复地创建相似对象时可以考虑使用原型模式。比如需要在一个循环体内创建对象,假如对象创建过程比较复杂或者循环次数很多的话,使用原型模式不但可以简化创建过程,而且可以使系统的整体性能提高很多。

原型模式的注意事项

使用原型模式复制对象不会调用类的构造方法。因为对象的复制是通过调用Object类的clone方法来完成的,它直接在内存中复制数据,因此不会调用到类的构造方法。不但构造方法中的代码不会执行,甚至连访问权限都对原型模式无效。还记得单例模式吗?单例模式中,只要将构造方法的访问权限设置为private型,就可以实现单例。但是clone方法直接无视构造方法的权限,所以,单例模式与原型模式是冲突的,在使用时要特别注意。
    深拷贝与浅拷贝。Object类的clone方法只会拷贝对象中的基本的数据类型,对于数组、容器对象、引用对象等都不会拷贝,这就是浅拷贝。如果要实现深拷贝,必须将原型模式中的数组、容器对象、引用对象等另行拷贝。
PS:深拷贝与浅拷贝问题中,会发生深拷贝的有java中的8中基本类型以及他们的封装类型,另外还有String类型(String是final的无法修改,修改即创建新对象),其余的都是浅拷贝。