C - NP-Hard Problem

Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Description

Input

Output

Sample Input

Sample Output

Hint

Description

Recently, Pari and Arya did some research about NP-Hard problems and they found the minimum vertex cover problem very interesting.

Suppose the graph G is given. Subset A of its vertices is called a vertex cover of this graph, if for each edge uv there is at least one endpoint of it in this set, i.e. or (or both).

Pari and Arya have won a great undirected graph as an award in a team contest. Now they have to split it in two parts, but both of them want their parts of the graph to be a vertex cover.

They have agreed to give you their graph and you need to find two disjoint subsets of its vertices A and B, such that both A and B are vertex cover or claim it's impossible. Each vertex should be given to no more than one of the friends (or you can even keep it for yourself).

Input

The first line of the input contains two integers n and m (2 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of vertices and the number of edges in the prize graph, respectively.

Each of the next m lines contains a pair of integers ui and vi (1  ≤  ui,  vi  ≤  n), denoting an undirected edge between ui and vi. It's guaranteed the graph won't contain any self-loops or multiple edges.

Output

If it's impossible to split the graph between Pari and Arya as they expect, print "-1" (without quotes).

If there are two disjoint sets of vertices, such that both sets are vertex cover, print their descriptions. Each description must contain two lines. The first line contains a single integer k denoting the number of vertices in that vertex cover, and the second line contains k integers — the indices of vertices. Note that because of m ≥ 1, vertex cover cannot be empty.

Sample Input

Input
`4 21 22 3`
Output
`12 21 3 `
Input
`3 31 22 31 3`
Output
`-1`

Sample Output

Hint

In the first sample, you can give the vertex number 2 to Arya and vertices numbered 1 and 3 to Pari and keep vertex number 4 for yourself (or give it someone, if you wish).

In the second sample, there is no way to satisfy both Pari and Arya.

```#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
const int MAX=1e5+5;
using namespace std;
vector <int>mp[MAX];
int d[MAX];
int vis[MAX];
int n,m;
int dfs(int x,int f)
{
vis[x]=1;
d[x]=f;
int flag;
for(int i=0;i<mp[x].size();i++)
{
if(d[mp[x][i]]==d[x])
return flag=0;
if(d[mp[x][i]]==0)
{
d[mp[x][i]]=-1*f;
if(!dfs(mp[x][i],-1*f))
return flag=0;
}

}
return flag=1;
}
int main()
{
while(cin>>n>>m)
{
int a,b,flag=1;
for(int i=0;i<MAX;i++)
mp[i].clear();
for(int i=0;i<m;i++)
{
scanf("%d%d",&a,&b);
mp[a].push_back(b);
mp[b].push_back(a);
}
memset(d,0,sizeof(d));
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++)
{
if(!vis[i])
{
if(!dfs(i,1))
{flag=0;break;}
}
}
if(!flag)
cout<<-1<<endl;
else
{
int q=0,p=0;
for(int i=1;i<=n;i++)
{
if(d[i]==1)
q++;
if(d[i]==-1)
p++;
}
cout<<q<<endl;
for(int i=1;i<=n;i++)
if(d[i]==1)
printf("%d ",i);
cout<<endl;
cout<<p<<endl;
for(int i=1;i<=n;i++)
if(d[i]==-1)
printf("%d ",i);
cout<<endl;
}

}
}代码改良：```
```#include <iostream>
#include <vector>
#include <cstring>
#include <cstdio>
const int MAX=1e5+5;
using namespace std;
vector<int>mp[MAX],ans1,ans2;
int d[MAX],n,m;
int dfs(int x)
{
if(d[x]==0)
d[x]=1;
if(d[x]==1)
ans1.push_back(x);
if(d[x]==-1)
ans2.push_back(x);
for(int i=0;i<mp[x].size();i++)
{
if(d[x]==d[mp[x][i]])
return 0;
if(d[mp[x][i]]==0)
{d[mp[x][i]]=-1*d[x];
if(!dfs(mp[x][i]))
return 0;}
}
return 1;
}
int main()
{ int a,b;
while(cin>>n>>m)
{   for(int i=1;i<=n;i++)
mp[i].clear();
ans1.clear();
ans2.clear();
for(int i=0;i<m;i++)
{
scanf("%d%d",&a,&b);
mp[a].push_back(b);
mp[b].push_back(a);
}
int flag=1;
memset(d,0,sizeof(d));
for(int i=1;i<=n;i++)
{
if(d[i]==0)
{
if(!dfs(i))
{
flag=0;
break;
}
}

}
if(!flag)
cout<<-1<<endl;
else
{
cout<<ans1.size()<<endl;
for(int i=0;i<ans1.size();i++)
printf("%d ",ans1[i]);
cout<<endl;
cout<<ans2.size()<<endl;
for(int i=0;i<ans2.size();i++)
printf("%d ",ans2[i]);
cout<<endl;

}

}
}
```
` `

## C - NP-Hard Problem（二分图判定-染色法）的更多相关文章

1. CF687A. NP-Hard Problem[二分图判定]

A. NP-Hard Problem time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

2. hdu 2444(染色法判断二分图+最大匹配)

The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

3. Wrestling Match---hdu5971(2016CCPC大连 染色法判断是否是二分图)

4. 染色法判断是否是二分图 hdu2444

用染色法判断二分图是这样进行的,随便选择一个点, 1.把它染成黑色,然后将它相邻的点染成白色,然后入队列 2.出队列,与这个点相邻的点染成相反的颜色 根据二分图的特性,相同集合内的点颜色是相同的,即 ...

5. poj 2942 Knights of the Round Table(点双连通分量+二分图判定)

题目链接:http://poj.org/problem?id=2942 题意:n个骑士要举行圆桌会议,但是有些骑士相互仇视,必须满足以下两个条件才能举行: (1)任何两个互相仇视的骑士不能相邻,每个骑 ...

6. HDU2444(KB10-B 二分图判定+最大匹配)

The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

7. HDU 2444：The Accomodation of Students（二分图判定+匹配）

http://acm.hdu.edu.cn/showproblem.php?pid=2444 题意:给出边,判断这个是否是一个二分图,并求最大匹配. 思路:先染色法求出是否是一个二分图,然后再匈牙利求 ...

8. COJ 0578 4019二分图判定

4019二分图判定 难度级别: B: 编程语言:不限:运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 给定一个具有n个顶点(顶点编号为0,1,… ...

9. HDU 2444 The Accomodation of Students（二分图判定+最大匹配）

这是一个基础的二分图,题意比较好理解,给出n个人,其中有m对互不了解的人,先让我们判断能不能把这n对分成两部分,这就用到的二分图的判断方法了,二分图是没有由奇数条边构成环的图,这里用bfs染色法就可以 ...

10. DFS的运用（二分图判定、无向图的割顶和桥，双连通分量，有向图的强连通分量）

一.dfs框架: vector<int>G[maxn]; //存图 int vis[maxn]; //节点访问标记 void dfs(int u) { vis[u] = ; PREVISI ...

## 随机推荐

1. 利用sqlmap进行mysql提权的小方法(win与liunx通用）

2. Cisco IOS Security command Guide

copy system:running-config nvram:startup-config : to save your configuration changes to the startup ...

3. scanf

scanf函数: (1)与printf函数一样,都被定义在头文件stdio.h里,因此在使用scanf函数时要加上#include <stdio.h>.它是格式输入函数,即按用户指定的格式 ...

4. unigui MessageDlg方法调用例子

procedure TfrmEmployee.btnDeleteClick(Sender: TObject);var aBool: Boolean;begin inherited; MessageDl ...

5. Jquery post 传递数组给asp.net mvc方法

以批量删除数据为例  做批量删除会需要传递要删除的数据ID数组 function RemoveLog(){ var postModel=[]; //遍历复选框获取要删除的数据ID 存放到数组中  \$( ...

6. 怎样用AIDL Service 传递复杂数据

大家都知道在Android中通过AIDL可以跨进程调用Service中的数据,网上也有很多实例,但是大部分实例都是关于基本数据类型的远程调用,很少讲到复杂数据的调用,今天我用一个例子来演示一下怎样用A ...

在数据处理方面,我们发现数据输入速度一般要比的数据处理速度快很多,这种现象在大多数据领域尤为明显.随着数据不断膨胀,相应的响应时间自然要有所增加,数据处理的复杂度也在不断提高.作为一个开发者,我们自然 ...

8. TCP和UDP的最完整的区别

TCP UDP TCP与UDP基本区别   1.基于连接与无连接   2.TCP要求系统资源较多,UDP较少:    3.UDP程序结构较简单    4.流模式(TCP)与数据报模式(UDP);    ...

9. 2018-2019-3 网络对抗技术 20165305 Exp3 免杀原理与实践

1.实验内容及步骤 1.1 正确使用msf编码器,msfvenom生成如jar之类的其他文件,veil-evasion,加壳工具,使用shellcode编程 将做实验二时生成的后门文件用virusto ...

10. 服务器-华为RH5885 V3-安装Windows Server 2008R2后设备管理器中存在大量的感叹号，并且无法识别网络适配器，没有网卡

问题描述:用引导盘安装Windows Server 2008R2后,出现如题的情况. 根源:驱动未安装. 解决方法: 1.下载驱动:https://support.huawei.com/enterpr ...