索引对大数据的查询速度的提升是非常大的,Explain可以帮你分析SQL语句是否用到相关索引。

索引类似大学图书馆建书目索引,可以提高数据检索的效率,降低数据库的IO成本。MySQL在300万条记录左右性能开始逐渐下降,虽然官方文档说500~800w记录,所以大数据量建立索引是非常有必要的。MySQL提供了Explain,用于显示SQL执行的详细信息,可以进行索引的优化。

一、导致SQL执行慢的原因:

1. 硬件问题。如网络速度慢,内存不足,I/O吞吐量小,磁盘空间满了等。

2. 没有索引或者索引失效。(一般在互联网公司,DBA会在半夜把表锁了,重新建立一遍索引,因为当你删除某个数据的时候,索引的树结构就不完整了。所以互联网公司的数据做的是假删除.一是为了做数据分析,二是为了不破坏索引 )

3. 数据过多(分库分表)

4. 服务器调优及各个参数设置(调整my.cnf)

二、分析原因时,一定要找切入点:

1. 先观察,开启慢查询日志,设置相应的阈值(比如超过3秒就是慢SQL),在生产环境跑上个一天过后,看看哪些SQL比较慢。

2. Explain和慢SQL分析。比如SQL语句写的烂,索引没有或失效,关联查询太多(有时候是设计缺陷或者不得以的需求)等等。

3. Show Profile是比Explain更近一步的执行细节,可以查询到执行每一个SQL都干了什么事,这些事分别花了多少秒。

4. 找DBA或者运维对MySQL进行服务器的参数调优。

三、什么是索引?

MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。我们可以简单理解为:快速查找排好序的一种数据结构。Mysql索引主要有两种结构:B+Tree索引和Hash索引。我们平常所说的索引,如果没有特别指明,一般都是指B树结构组织的索引(B+Tree索引)。索引如图所示:

最外层浅蓝色磁盘块1里有数据17、35(深蓝色)和指针P1、P2、P3(黄色)。P1指针表示小于17的磁盘块,P2是在17-35之间,P3指向大于35的磁盘块。真实数据存在于子叶节点也就是最底下的一层3、5、9、10、13......非叶子节点不存储真实的数据,只存储指引搜索方向的数据项,如17、35。

查找过程:例如搜索28数据项,首先加载磁盘块1到内存中,发生一次I/O,用二分查找确定在P2指针。接着发现28在26和30之间,通过P2指针的地址加载磁盘块3到内存,发生第二次I/O。用同样的方式找到磁盘块8,发生第三次I/O。

真实的情况是,上面3层的B+Tree可以表示上百万的数据,上百万的数据只发生了三次I/O而不是上百万次I/O,时间提升是巨大的。

四、Explain分析

前文铺垫完成,进入实操部分,先来插入测试需要的数据:

CREATE TABLE `user_info` ( `id`   BIGINT(20)  NOT NULL AUTO_INCREMENT, `name` VARCHAR(50) NOT NULL DEFAULT '', `age`  INT(11)              DEFAULT NULL, PRIMARY KEY (`id`), KEY `name_index` (`name`))ENGINE = InnoDB DEFAULT CHARSET = utf8;

INSERT INTO user_info (name, age) VALUES ('xys', 20);INSERT INTO user_info (name, age) VALUES ('a', 21);INSERT INTO user_info (name, age) VALUES ('b', 23);INSERT INTO user_info (name, age) VALUES ('c', 50);INSERT INTO user_info (name, age) VALUES ('d', 15);INSERT INTO user_info (name, age) VALUES ('e', 20);INSERT INTO user_info (name, age) VALUES ('f', 21);INSERT INTO user_info (name, age) VALUES ('g', 23);INSERT INTO user_info (name, age) VALUES ('h', 50);INSERT INTO user_info (name, age) VALUES ('i', 15);

CREATE TABLE `order_info` ( `id`           BIGINT(20)  NOT NULL AUTO_INCREMENT, `user_id`      BIGINT(20)           DEFAULT NULL, `product_name` VARCHAR(50) NOT NULL DEFAULT '', `productor`    VARCHAR(30)          DEFAULT NULL, PRIMARY KEY (`id`), KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`))ENGINE = InnoDB DEFAULT CHARSET = utf8;

INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p1', 'WHH');INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p2', 'WL');INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p1', 'DX');INSERT INTO order_info (user_id, product_name, productor) VALUES (2, 'p1', 'WHH');INSERT INTO order_info (user_id, product_name, productor) VALUES (2, 'p5', 'WL');INSERT INTO order_info (user_id, product_name, productor) VALUES (3, 'p3', 'MA');INSERT INTO order_info (user_id, product_name, productor) VALUES (4, 'p1', 'WHH');INSERT INTO order_info (user_id, product_name, productor) VALUES (6, 'p1', 'WHH');INSERT INTO order_info (user_id, product_name, productor) VALUES (9, 'p8', 'TE');

初体验,执行Explain的效果:

索引使用情况在possible_keys、key和key_len三列,接下来我们先从左到右依次讲解。

1. id

--id相同,执行顺序由上而下explain select u.*,o.* from user_info u,order_info o where u.id=o.user_id;

--id不同,值越大越先被执行explain select * from  user_info  where id=(select user_id from order_info where  product_name ='p8');

2. select_type

可以看id的执行实例,总共有以下几种类型:

  • SIMPLE: 表示此查询不包含 UNION 查询或子查询

  • PRIMARY: 表示此查询是最外层的查询

  • SUBQUERY: 子查询中的第一个 SELECT

  • UNION: 表示此查询是 UNION 的第二或随后的查询

  • DEPENDENT UNION: UNION 中的第二个或后面的查询语句, 取决于外面的查询

  • UNION RESULT, UNION 的结果

  • DEPENDENT SUBQUERY: 子查询中的第一个 www.wanmeiyuele.cn  SELECT, 取决于外面的查询. 即子查询依赖于外层查询的结果.

  • DERIVED:衍生,表示导出表的SELECT(FROM子句的子查询)

3. table

table表示查询涉及的表或衍生的表:

explain select tt.* from (select u.* from user_info u,order_info o where u.id=o.user_id and u.id=1) tt

id为1的<derived2>的表示id为2的u和o表衍生出来的。

4. type

type 字段比较重要,它提供了判断查询是否高效的重要依据依据。 通过 type 字段,我们判断此次查询是 全表扫描 还是 索引扫描等。

type 常用的取值有:

  • system: 表中只有一条数据, 这个类型是特殊的 const 类型。

  • const: 针对主键或唯一索引的等值查询扫描,最多只返回一行数据。 const 查询速度非常快, 因为它仅仅读取一次即可。例如下面的这个查询,它使用了主键索引,因此 type 就是 const 类型的:explain select * from user_info where id = 2;

  • eq_ref: 此类型通常出现在多表的 join 查询,表示对于前表的每一个结果,都只能匹配到后表的一行结果。并且查询的比较操作通常是 =,查询效率较高。例如:explain select * from user_info, order_info where user_info.id = order_info.user_id;

  • ref: 此类型通常出现在多表的 join 查询,针对于非唯一或非主键索引,或者是使用了 最左前缀 规则索引的查询。例如下面这个例子中, 就使用到了 ref 类型的查询:explain select * from user_info, order_info where user_info.id = order_info.user_id AND order_info.user_id = 5

  • range: 表示使用索引范围查询,通过索引字段范围获取表中部分数据记录。这个类型通常出现在 =, <>, >, >=, <, <=, IS NULL, <=>, BETWEEN, IN() 操作中。例如下面的例子就是一个范围查询:explain select * from user_info  where id between 2 and 8;

  • index: 表示全索引扫描(full index scan),和 ALL 类型类似,只不过 ALL 类型是全表扫描,而 index 类型则仅仅扫描所有的索引, 而不扫描数据。index 类型通常出现在:所要查询的数据直接在索引树中就可以获取到, 而不需要扫描数据。当是这种情况时,Extra 字段 会显示 Using index。

  • ALL: 表示全表扫描,这个类型的查询是性能最差的查询之一。通常来说, 我们的查询不应该出现 ALL 类型的查询,因为这样的查询在数据量大的情况下,对数据库的性能是巨大的灾难。 如一个查询是 ALL 类型查询, 那么一般来说可以对相应的字段添加索引来避免。

通常来说, 不同的 type 类型的性能关系如下:

ALL < index < range ~ index_merge < ref < eq_ref < const < system

ALL 类型因为是全表扫描, 因此在相同的查询条件下,它是速度最慢的。而 index 类型的查询虽然不是全表扫描,但是它扫描了所有的索引,因此比 ALL 类型的稍快.后面的几种类型都是利用了索引来查询数据,因此可以过滤部分或大部分数据,因此查询效率就比较高了。

5. possible_keys

它表示 mysql 在查询时,可能使用到的索引。 注意,即使有些索引在 possible_keys 中出现,但是并不表示此索引会真正地被 mysql 使用到。 mysql 在查询时具体使用了哪些索引,由 key 字段决定。

6. key

此字段是 mysql 在当前查询时所真正使用到的索引。比如请客吃饭,possible_keys是应到多少人,key是实到多少人。当我们没有建立索引时:

explain select o.* from order_info o where www.yibaoyule1.com  o.www.fengshen157.com product_name= 'p1' and  o.productor='whh';create index idx_name_productor on order_info(productor);drop index idx_name_productor on order_info;

建立复合索引后再查询:

7. key_len

表示查询优化器使用了索引的字节数,这个字段可以评估组合索引是否完全被使用。

8. ref

这个表示显示索引的哪一列被使用了,如果可能的话,是一个常量。前文的type属性里也有ref,注意区别。

9. rows

rows 也是一个重要的字段,mysql 查询优化器根据统计信息,估算 sql 要查找到结果集需要扫描读取的数据行数,这个值非常直观的显示 sql 效率好坏, 原则上 rows 越少越好。可以对比key中的例子,一个没建立索引钱,rows是9,建立索引后,rows是4。

10. extra

explain 中的很多额外的信息会在 extra 字段显示, 常见的有以下几种内容:

  • using filesort :表示 mysql 需额外的排序操作,不能通过索引顺序达到排序效果。一般有 using filesort都建议优化去掉,因为这样的查询 cpu 资源消耗大。

  • using index:覆盖索引扫描,表示查询在索引树中就可查找所需数据,不用扫描表数据文件,往往说明性能不错。

  • using temporary:查询有使用临时表, 一般出现于排序, 分组和多表 join 的情况, 查询效率不高,建议优化。

  • using where :www.cnzhaotai.com 表名使用了where过滤。

五、优化案例

explain select u.*,o.* from user_info u www.leyouzaixan.cn LEFT JOIN  order_info o on u.id=o.user_id;

执行结果,type有ALL,并且没有索引:

开始优化,在关联列上创建索引,明显看到type列的ALL变成ref,并且用到了索引,rows也从扫描9行变成了1行:

这里面一般有个规律是:左链接索引加在右表上面,右链接索引加在左表上面。

六、是否需要创建索引?

索引虽然能非常高效的提高查询速度,同时却会降低更新表的速度。实际上索引也是一张表,该表保存了主键与索引字段,并指向实体表的记录,所以索引列也是要占用空间的。

我是个普通的程序猿,水平有限,文章难免有错误,欢迎牺牲自己宝贵时间的读者就本文内容直抒己见,我的目的仅仅是希望文章对读者有所帮助。

  • 原文:my.www.365soke.cn oschina.net/liughDevelop/blog/1788148

导致SQL执行慢的原因的更多相关文章

  1. 【转】导致SQL执行慢的原因

    索引对大数据的查询速度的提升是非常大的,Explain可以帮你分析SQL语句是否用到相关索引. 索引类似大学图书馆建书目索引,可以提高数据检索的效率,降低数据库的IO成本.MySQL在300万条记录左 ...

  2. 如何使用性能分析工具定位SQL执行慢的原因?

    但实际上 SQL 执行起来可能还是很慢,那么到底从哪里定位 SQL 查询慢的问题呢?是索引设计的问题?服务器参数配置的问题?还是需要增加缓存的问题呢?性能分析来入手分析,定位导致 SQL 执行慢的原因 ...

  3. Oracle SQL执行缓慢的原因以及解决方案

     以下的文章抓哟是对Oracle SQL执行缓慢的原因的分析,如果Oracle数据库中的某张表的相关数据已是2亿多时,同时此表也创建了相关的4个独立的相关索引.由于业务方面的需要,每天需分两次向此表中 ...

  4. hint不当索引,影响多表连接方式,最终导致SQL执行缓慢

    需求:一个SQL执行特别慢,无法返回结果,需要进行优化,最终返回结果即可. 一.SQL分析 二.尝试执行,观测执行计划 三.修改SQL 四.问题总结 一.SQL分析 )SQL文本,执行时间,执行用户 ...

  5. ecshop SQL注入漏洞导致代码执行

    漏洞名称:ecshop SQL注入漏洞导致代码执行补丁编号:11208761补丁文件:/includes/libinsert.php补丁来源:云盾自研漏洞描述:ecshop的/includes/lib ...

  6. sqlt 之 分析 DB upgrade 导致SQL 性能下降 的方法 xplore

    https://blog.csdn.net/lukeUnique/article/details/79331779 https://mauro-pagano.com/2014/10/27/when-t ...

  7. 12.1.0.2自适应特性导致SQL性能下降

    背景介绍 在升级到12.1.0.2.0数据库版本后,在使用12c中引入的自适应特性默认配置的情况下,可能引起SQL性能的下降. 问题现象升级到12.1.0.2.0后,SQL语句性能可能出现下降. 影响 ...

  8. Hibernate 模糊查询 &#39; %?% &#39; SQL执行异常

    今天我在使用Hibernate 的SQL预编译之后注入参数的形式写了一条模糊查询语句.刚开始我是这么写的

  9. Oracle sql执行计划解析

    Oracle sql执行计划解析 https://blog.csdn.net/xybelieve1990/article/details/50562963 Oracle优化器 Oracle的优化器共有 ...

随机推荐

  1. android消息处理机制之2handler与looper,MessageQueue:的关系

    // Looper: 在UI主线程里面有默认有一个Looper对象来管理UI线程的各条消息,但是在自定义的实现Thread的消息循环和消息派发,缺省情况下Thread是没有这个消息循环的既没有Loop ...

  2. Lintcode: Segment Tree Query

    For an integer array (index from 0 to n-1, where n is the size of this array), in the corresponding ...

  3. hdu 1069

    //Accepted 264 KB 0 ms //每种block只有三种方法,且每种放法至多放一次 //规定三条边的顺序后 //把所有的block按x递增排序,x相同则按y递增排序 //然后dp // ...

  4. 如何在不装ORACLE的情况下使用PLSQL

    原来我电脑装了oracle跟plsql,然后使用plsql的.后来因为某些原因,我重装了系统,把装的软件都格调了,需要重新装.当时在装plsql的时候我就想,我一直都是直接用plsql远程连接的服务器 ...

  5. 向架构师进军---&amp;gt;怎样编写软件架构文档

    假设你对项目管理.系统架构有兴趣,请加微信订阅号"softjg",增加这个PM.架构师的大家庭 问:为什么要编写软件架构文档,它的优点是什么? 答: 有文档的架构有助于不同利益相关 ...

  6. C++ 11 笔记 (五) : std::thread

    这真是一个巨大的话题.我猜记录完善绝B需要一本书的容量. 所以..我只是略有了解,等以后用的深入了再慢慢补充吧. C++写多线程真是一个痛苦的事情,当初用过C语言的CreateThread,见过boo ...

  7. 【软工作业&amp;思考】关于软工的一些概念性理解暨第一次阅读作业

    概述 项目 内容 本次作业所属课程 2019BUAA软件工程 周二班 本次作业要求 第1次个人作业当然,比这个更重要百倍的还是实实在在的思考,这也是标题如此命名的原因 我在本课程的目标 在原有实践经验 ...

  8. 关于sql的查询操作记录

    1.--读取库中的所有表名 select name from sysobjects where xtype='u'  --读取指定表的所有列名 select name from syscolumns  ...

  9. ABP问题速查表

    如果你领导要让你一夜之间掌握ABP,并且用ABP撸一个项目出来,你很可能很快速的过了一遍ABP文档就马上动手干活了.那么这篇文章就很适合你. 这篇文章列出了很多ABP新手问的问题和解答.注:有些同学问 ...

  10. SQL脚本修改数据库名称

    USE master; GO DECLARE @SQL VARCHAR(MAX); SET @SQL='' SELECT @SQL=@SQL+'; KILL '+RTRIM(SPID) FROM ma ...