代码随想录算法训练营Day51 动态规划
代码随想录算法训练营
代码随想录算法训练营Day51 动态规划| 309.最佳买卖股票时机含冷冻期 714.买卖股票的最佳时机含手续费 总结
309.最佳买卖股票时机含冷冻期
题目链接:309.最佳买卖股票时机含冷冻期
给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
- 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
- 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
示例: - 输入: [1,2,3,0,2]
- 输出: 3
- 解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
总体思路
在[[代码随想录算法训练营Day50 动态规划]]中有两个状态,持有股票后的最多现金,和不持有股票的最多现金。
动规五部曲,分析如下:
- 确定dp数组以及下标的含义
dp[i][j]
,第i天状态为j,所剩的最多现金为dp[i][j]
。
其实本题很多同学搞的比较懵,是因为出现冷冻期之后,状态其实是比较复杂度,例如今天买入股票、今天卖出股票、今天是冷冻期,都是不能操作股票的。
具体可以区分出如下四个状态:
- 状态一:持有股票状态(今天买入股票,或者是之前就买入了股票然后没有操作,一直持有)
- 不持有股票状态,这里就有两种卖出股票状态
- 状态二:保持卖出股票的状态(两天前就卖出了股票,度过一天冷冻期。或者是前一天就是卖出股票状态,一直没操作)
- 状态三:今天卖出股票
- 状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!
j的状态为: - 0:状态一
- 1:状态二
- 2:状态三
- 3:状态四
很多题解为什么讲的比较模糊,是因为把这四个状态合并成三个状态了,其实就是把状态二和状态四合并在一起了。
从代码上来看确实可以合并,但从逻辑上分析合并之后就很难理解了,所以我下面的讲解是按照这四个状态来的,把每一个状态分析清楚。
如果大家按照代码随想录顺序来刷的话,会发现 买卖股票最佳时机 1,2,3,4 的题目讲解中 - 动态规划:121.买卖股票的最佳时机
- 动态规划:122.买卖股票的最佳时机II
- 动态规划:123.买卖股票的最佳时机III
- 动态规划:188.买卖股票的最佳时机IV
「今天卖出股票」我是没有单独列出一个状态的归类为「不持有股票的状态」,而本题为什么要单独列出「今天卖出股票」 一个状态呢?
因为本题我们有冷冻期,而冷冻期的前一天,只能是 「今天卖出股票」状态,如果是 「不持有股票状态」那么就很模糊,因为不一定是 卖出股票的操作。
如果没有按照 代码随想录 顺序去刷的录友,可能看这里的讲解 会有点困惑,建议把代码随想录本篇之前股票内容的讲解都看一下,领会一下每天 状态的设置。
注意这里的每一个状态,例如状态一,是持有股票股票状态并不是说今天一定就买入股票,而是说保持买入股票的状态即:可能是前几天买入的,之后一直没操作,所以保持买入股票的状态。
- 确定递推公式
达到买入股票状态(状态一)即:dp[i][0]
,有两个具体操作:
- 操作一:前一天就是持有股票状态(状态一),
dp[i][0] = dp[i - 1][0]
- 操作二:今天买入了,有两种情况
- 前一天是冷冻期(状态四),
dp[i - 1][3] - prices[i]
- 前一天是保持卖出股票的状态(状态二),
dp[i - 1][1] - prices[i]
那么dp[i][0] = max(dp[i - 1][0], dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]); **达到保持卖出股票状态**(状态二)即:
dp[i][1]`,有两个具体操作:
- 前一天是冷冻期(状态四),
- 操作一:前一天就是状态二
- 操作二:前一天是冷冻期(状态四)
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]); **达到今天就卖出股票状态**(状态三),即:
dp[i][2],只有一个操作: 昨天一定是持有股票状态(状态一),今天卖出 即:
dp[i][2] = dp[i - 1][0] + prices[i];
达到冷冻期状态(状态四),即:dp[i][3]
,只有一个操作:
昨天卖出了股票(状态三)
`dp[i][3] = dp[i - 1][2];
综上分析,递推代码如下:
dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];
- dp数组如何初始化
这里主要讨论一下第0天如何初始化。
如果是持有股票状态(状态一)那么:dp[0][0] = -prices[0]
,一定是当天买入股票。
保持卖出股票状态(状态二),这里其实从 「状态二」的定义来说 ,很难明确应该初始多少,这种情况我们就看递推公式需要我们给他初始成什么数值。
如果i为1,第1天买入股票,那么递归公式中需要计算dp[i - 1][1] - prices[i]
,即dp[0][1] - prices[1]
,那么大家感受一下dp[0][1]
(即第0天的状态二)应该初始成多少,只能初始为0。想一想如果初始为其他数值,是我们第1天买入股票后 手里还剩的现金数量是不是就不对了。
今天卖出了股票(状态三),同上分析,dp[0][2]
初始化为0,dp[0][3]
也初始为0。 - 确定遍历顺序
从递归公式上可以看出,dp[i]
依赖于dp[i-1]
,所以是从前向后遍历。 - 举例推导dp数组
以 [1,2,3,0,2] 为例,dp数组如下:
最后结果是取 状态二,状态三,和状态四的最大值,不少同学会把状态四忘了,状态四是冷冻期,最后一天如果是冷冻期也可能是最大值。
class Solution {
public:
int maxProfit(vector<int>& prices) {
int n = prices.size();
if (n == 0) return 0;
vector<vector<int>> dp(n, vector<int>(4, 0));
dp[0][0] -= prices[0]; // 持股票
for (int i = 1; i < n; i++) {
dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]));
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];
}
return max(dp[n - 1][3], max(dp[n - 1][1], dp[n - 1][2]));
}
};
714.买卖股票的最佳时机含手续费
题目链接:714.买卖股票的最佳时机含手续费
给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例 1:
- 输入: prices = [1, 3, 2, 8, 4, 9], fee = 2
- 输出: 8
解释: 能够达到的最大利润: - 在此处买入 prices[0] = 1
- 在此处卖出 prices[3] = 8
- 在此处买入 prices[4] = 4
- 在此处卖出 prices[5] = 9
- 总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8.
注意: - 0 < prices.length <= 50000.
- 0 < prices[i] < 50000.
- 0 <= fee < 50000.
总体思路
本题只需要在计算卖出操作的时候减去手续费就可以了,代码几乎是一样的。
唯一差别在于递推公式部分,所以本篇也就不按照动规五部曲详细讲解了,主要讲解一下递推公式部分。
这里重申一下dp数组的含义:
dp[i][0]
表示第i天持有股票所省最多现金。 dp[i][1]
表示第i天不持有股票所得最多现金
如果第i天持有股票即dp[i][0]
, 那么可以由两个状态推出来
- 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:
dp[i - 1][0]
- 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:
dp[i - 1][1] - prices[i]
所以:`dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
在来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来 - 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:`dp[i - 1][1]
- 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金,注意这里需要有手续费了即:
dp[i - 1][0] + prices[i] - fee 所以:
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
class Solution {
public:
int maxProfit(vector<int>& prices, int fee) {
int n = prices.size();
vector<vector<int>> dp(n, vector<int>(2, 0));
dp[0][0] -= prices[0]; // 持股票
for (int i = 1; i < n; i++) {
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
}
return max(dp[n - 1][0], dp[n - 1][1]);
}
};
总结
买股票的最佳时机
股票只能买卖一次,问最大利润。
【贪心解法】
取最左最小值,取最右最大值,那么得到的差值就是最大利润,代码如下:
class Solution {
public:
int maxProfit(vector<int>& prices) {
int low = INT_MAX;
int result = 0;
for (int i = 0; i < prices.size(); i++) {
low = min(low, prices[i]); // 取最左最小价格
result = max(result, prices[i] - low); // 直接取最大区间利润
}
return result;
}
};
【动态规划】
dp[i][0]
表示第i天持有股票所得现金。dp[i][1]
表示第i天不持有股票所得现金。
如果第i天持有股票即dp[i][0]
, 那么可以由两个状态推出来
- 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:
dp[i - 1][0]
- 第i天买入股票,所得现金就是买入今天的股票后所得现金即:
-prices[i] 所以dp[i][0] = max(dp[i - 1][0], -prices[i]);
如果第i天不持有股票即dp[i][1]
, 也可以由两个状态推出来
- 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:
dp[i - 1][1]
- 第i天卖出股票,所得现金就是按照今天股票佳价格卖出后所得现金即:
prices[i] + dp[i - 1][0]
所以`dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
代码随想录算法训练营Day51 动态规划的更多相关文章
- 代码随想录算法训练营day01 | leetcode 704/27
前言 考研结束半个月了,自己也简单休整了一波,估了一下分,应该能进复试,但还是感觉不够托底.不管怎样,要把代码能力和八股捡起来了,正好看到卡哥有这个算法训练营,遂果断参加,为机试和日后求职打下一个 ...
- 代码随想录算法训练营day02 | leetcode 977/209/59
leetcode 977 分析1.0: 要求对平方后的int排序,而给定数组中元素可正可负,一开始有思维误区,觉得最小值一定在0左右徘徊,但数据可能并不包含0:遂继续思考,发现元素分布有三种情 ...
- 代码随想录算法训练营day22 | leetcode 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点
LeetCode 235. 二叉搜索树的最近公共祖先 分析1.0 二叉搜索树根节点元素值大小介于子树之间,所以只要找到第一个介于他俩之间的节点就行 class Solution { public T ...
- 代码随想录算法训练营day17 | leetcode ● 110.平衡二叉树 ● 257. 二叉树的所有路径 ● 404.左叶子之和
LeetCode 110.平衡二叉树 分析1.0 求左子树高度和右子树高度,若高度差>1,则返回false,所以我递归了两遍 class Solution { public boolean is ...
- 代码随想录算法训练营day13
基础知识 二叉树基础知识 二叉树多考察完全二叉树.满二叉树,可以分为链式存储和数组存储,父子兄弟访问方式也有所不同,遍历也分为了前中后序遍历和层次遍历 Java定义 public class Tree ...
- 代码随想录算法训练营day12 | leetcode 239. 滑动窗口最大值 347.前 K 个高频元素
基础知识 ArrayDeque deque = new ArrayDeque(); /* offerFirst(E e) 在数组前面添加元素,并返回是否添加成功 offerLast(E e) 在数组后 ...
- 代码随想录算法训练营day10 | leetcode 232.用栈实现队列 225. 用队列实现栈
基础知识 使用ArrayDeque 实现栈和队列 stack push pop peek isEmpty() size() queue offer poll peek isEmpty() size() ...
- 代码随想录算法训练营day06 | leetcode 242、349 、202、1
基础知识 哈希 常见的结构(不要忘记数组) 数组 set (集合) map(映射) 注意 哈希冲突 哈希函数 LeetCode 242 分析1.0 HashMap<Character, Inte ...
- 代码随想录算法训练营day03 | LeetCode 203/707/206
基础知识 数据结构初始化 // 链表节点定义 public class ListNode { // 结点的值 int val; // 下一个结点 ListNode next; // 节点的构造函数(无 ...
- 代码随想录算法训练营day24 | leetcode 77. 组合
基础知识 回溯法解决的问题都可以抽象为树形结构,集合的大小就构成了树的宽度,递归的深度构成的树的深度 void backtracking(参数) { if (终止条件) { 存放结果; return; ...
随机推荐
- Android 音视频 - MediaCodec 编解码音视频
我们知道 Camera 采集回传的是 YUV 数据,AudioRecord 是 PCM,我们要对这些数据进行编码(压缩编码),这里我们来说在 Android 上音视频编解码逃不过的坑-MediaCod ...
- Redis-Cluster常用命令
CLUSTER INFO 打印集群的信息 CLUSTER NODES 列出集群当前已知的所有节点(node),以及这些节点的相关信息. //节点 CLUSTER MEET <ip> < ...
- StyleGAN 调整面部表情,让虚拟人脸更生动
目录 人脸表情 调整步骤 调整结果 人脸表情 通过上一篇文章 StyleGAN 生成的人脸:https://www.cnblogs.com/tinygeeker/p/17236264.html 人脸图 ...
- 聊天小精灵ChatGPT,好与不好大揭秘!
一.引言 在一个遥远的地球上,有一个名为ChatGPT的魔法盒子,它能够用智慧回答你的问题,解决你的困扰.它是一个聪明的家伙,但和任何家伙一样,有优点也有缺点.现在就让我们一起来探索这个神秘的魔法盒子 ...
- 分享一个修改了xml文件再也不用重启的项目mybatis-xmlreload
自我18年使用 Mybaits 以来,开发环境中如果修改了 xml 文件后,只有重启项目才能生效,如果小项目重启还好,但是对于一个重启需要十几分钟的大型项目来说,这就非常耗时了.开发人员因为修改了xm ...
- Exchangis搭建安装
项目简介 Exchangis是一个轻量级的.高扩展性的数据交换平台,支持对结构化及无结构化的异构数据源之间的数据传输,在应用层上具有数据权限管控.节点服务高可用和多租户资源隔离等业务特性,而在数据层上 ...
- [操作系统/Linux]磁盘分区
0 基本概念1: 盘片/盘面/磁头/扇区/磁道/柱面 本小节摘自: 硬盘基本知识(磁头.磁道.扇区.柱面) - 博客园 一张磁盘并不是拿过来直接用,需要先分区. 磁盘本身有很多sector(扇区).c ...
- 基于OCR进行Bert独立语义纠错实践
摘要:本案例我们利用视频字幕识别中的文字检测与识别模型,增加预训练Bert进行纠错 本文分享自华为云社区<Bert特调OCR>,作者:杜甫盖房子. 做这个项目的初衷是发现图比较糊/检测框比 ...
- day90:luffy:基于vue+drf的路飞学城项目前端部署
目录 1.域名备案 2.域名解析 3.设置安全组 4.部署架构图 5.一些准备工作 6.docker 7.把前端项目通过nginx容器来运行 后端部署传送门:基于vue+drf的路飞学城项目后端部署 ...
- 2023成都.NET线下技术沙龙圆满结束
2023年4月15日周六,由MASA技术团队和成都.NET俱乐部共同主办的2023年成都.NET线下技术沙龙活动在成都市世纪城新会展中心知域空间举行,共计报名人数90多人,实际到场60多人,13:30 ...