CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths 树上启发式合并(DSU ON TREE)
题目描述
一棵根为\(1\) 的树,每条边上有一个字符(\(a-v\)共\(22\)种)。 一条简单路径被称为\(Dokhtar-kosh\)当且仅当路径上的字符经过重新排序后可以变成一个回文串。 求每个子树中最长的\(Dokhtar-kosh\)路径的长度。
输入输出样例
输入 #1
4
1 s
2 a
3 s
输出 #1
3 1 1 0
输入 #2
5
1 a
2 h
1 a
4 h
输出 #2
4 1 0 1 0
分析
一道树上启发式合并的好题
首先,我们来考虑什么样的情况下路径上的字符重新排列之后能够形成回文串
很显然,只有当路径上每种字母的数量都为偶数个或者有且仅有一种字母的数量是奇数个时才满足条件
这两种情况分别对应奇回文串和偶回文串
然后我们会发现字母只有 \(22\) 种,因此字母的状态可以状压
而题目的要求仅仅是判断奇偶性,因此我们用 \(0\) 表示偶数,用 \(1\) 表示奇数
那么满足要求的状态只有 \(0\) 和 \(2^i\)
那么我们就可以存储每一种状态所对应的节点的最大深度
转移时,当前的结点的 \(dp\) 值会由三种情况转移过来
1、在儿子节点的 \(dp\) 值中取 \(max\)
2、从儿子节点中选择一条链和当前的节点组成一条新的链
3、从两个不同的儿子节点中选择两条链和当前的节点组成一条新的链
为了避免出现自己更新自己的情况,我们要计算完一个儿子节点后再计算另一个儿子节点
代码
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define rg register
const int maxn=4e6+5;
int h[maxn],tot=1,n;
struct asd{
int to,nxt,val;
}b[maxn];
void ad(int aa,int bb,int cc){
b[tot].to=bb;
b[tot].nxt=h[aa];
b[tot].val=cc;
h[aa]=tot++;
}
int siz[maxn],son[maxn],dep[maxn];
int f[maxn],dp[maxn],orz,ans[maxn<<2],yh[maxn],mmax,haha;
void dfs1(int now,int fa){
siz[now]=1;
dep[now]=dep[fa]+1;
f[now]=fa;
for(rg int i=h[now];i!=-1;i=b[i].nxt){
rg int u=b[i].to;
if(u==fa) continue;
yh[u]=yh[now]^(1<<b[i].val);
dfs1(u,now);
siz[now]+=siz[u];
if(son[now]==0 || siz[u]>siz[son[now]]){
son[now]=u;
}
}
}
void js(int now){
if(ans[yh[now]]) mmax=std::max(mmax,ans[yh[now]]+dep[now]-haha);
for(int i=0;i<=22;i++){
if(ans[yh[now]^(1<<i)])mmax=std::max(mmax,ans[yh[now]^(1<<i)]+dep[now]-haha);
//只有当ans值存在的时候才能转移
}
for(rg int i=h[now];i!=-1;i=b[i].nxt){
rg int u=b[i].to;
if(u==f[now] || u==orz) continue;
js(u);
}
}
//计算子树对父亲节点的贡献
void add(int now,int op){
if(op==1){
ans[yh[now]]=std::max(ans[yh[now]],dep[now]);
} else {
ans[yh[now]]=0;
}
for(rg int i=h[now];i!=-1;i=b[i].nxt){
rg int u=b[i].to;
if(u==f[now] || u==orz) continue;
add(u,op);
}
}
//加入或删除子树贡献
void dfs2(int now,int fa,int op){
for(rg int i=h[now];i!=-1;i=b[i].nxt){
rg int u=b[i].to;
if(u==f[now] || u==son[now]) continue;
dfs2(u,now,0);
dp[now]=std::max(dp[now],dp[u]);
}
if(son[now]){
dfs2(son[now],now,1);
orz=son[now];
dp[now]=std::max(dp[now],dp[son[now]]);
}
//先递归轻儿子,再递归重儿子
haha=dep[now]*2;
for(rg int i=h[now];i!=-1;i=b[i].nxt){
rg int u=b[i].to;
if(u==orz || u==fa) continue;
js(u);
add(u,1);
}
//计算完一个子树的贡献再加入另一个子树的贡献
mmax=std::max(mmax,ans[yh[now]]-dep[now]);
for(rg int i=0;i<=22;i++){
mmax=std::max(mmax,ans[yh[now]^(1<<i)]-dep[now]);
}
//即使ans值不存在,也不会更新
ans[yh[now]]=std::max(ans[yh[now]],dep[now]);
//从子树中选择一条链和当前节点连起来
orz=0;
dp[now]=std::max(mmax,dp[now]);
if(op==0){
add(now,-1);
//清除轻儿子贡献
mmax=haha=0;
}
}
int main(){
memset(h,-1,sizeof(h));
scanf("%d",&n);
rg int aa;
char bb;
for(rg int i=2;i<=n;i++){
scanf("%d %c",&aa,&bb);
ad(aa,i,bb-'a');
ad(i,aa,bb-'a');
}
dfs1(1,0);
dfs2(1,0,0);
for(int i=1;i<=n;i++){
printf("%d ",dp[i]);
}
printf("\n");
return 0;
}
CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths 树上启发式合并(DSU ON TREE)的更多相关文章
- 神奇的树上启发式合并 (dsu on tree)
参考资料 https://www.cnblogs.com/zhoushuyu/p/9069164.html https://www.cnblogs.com/candy99/p/dsuontree.ht ...
- 树上启发式合并 (dsu on tree)
这个故事告诉我们,在做一个辣鸡出题人的比赛之前,最好先看看他发明了什么新姿势= =居然直接出了道裸题 参考链接: http://codeforces.com/blog/entry/44351(原文) ...
- 树上启发式合并(dsu on tree)学习笔记
有丶难,学到自闭 参考的文章: zcysky:[学习笔记]dsu on tree Arpa:[Tutorial] Sack (dsu on tree) 先康一康模板题吧:CF 600E($Lomsat ...
- dsu on tree (树上启发式合并) 详解
一直都没出过算法详解,昨天心血来潮想写一篇,于是 dsu on tree 它来了 1.前置技能 1.链式前向星(vector 建图) 2.dfs 建树 3.剖分轻重链,轻重儿子 重儿子 一个结点的所有 ...
- dsu on tree 树上启发式合并 学习笔记
近几天跟着dreagonm大佬学习了\(dsu\ on\ tree\),来总结一下: \(dsu\ on\ tree\),也就是树上启发式合并,是用来处理一类离线的树上询问问题(比如子树内的颜色种数) ...
- CF600E Lomsat gelral——线段树合并/dsu on tree
题目描述 一棵树有$n$个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 这个题意是真的窒息...具体意思是说,每个节点有一个颜色,你要找的是每个子树中颜色的众数 ...
- 【Luogu U41492】树上数颜色——树上启发式合并(dsu on tree)
(这题在洛谷主站居然搜不到--还是在百度上偶然看到的) 题目描述 给一棵根为1的树,每次询问子树颜色种类数 输入输出格式 输入格式: 第一行一个整数n,表示树的结点数 接下来n-1行,每行一条边 接下 ...
- codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(启发式合并)
codeforces 741D Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths 题意 给出一棵树,每条边上有一个字符,字符集大小只 ...
- dsu on tree[树上启发式合并学习笔记]
dsu on tree 本质上是一个 启发式合并 复杂度 \(O(n\log n)\) 不支持修改 只能支持子树统计 不能支持链上统计- 先跑一遍树剖的dfs1 搞出来轻重儿子- 求每个节点的子树上有 ...
随机推荐
- layaair 物理
box2d http://box2d.org Box2D JS https://sourceforge.net/projects/box2d-js/ Box2D一:基础知识 https://www.c ...
- android 使用svg 和 webp
1.参考 https://chris.banes.dev/2016/02/25/appcompat-vector/#enabling-the-flag 2.使用svg 2.1 在中打开svg选项 an ...
- 避免nullpointer 空指针
来自知乎: 一般在服务器返回的数据上我们会做数据合法性检测,所以在api文档上需要注明字段的取值范围,然后客户端根据这个去做数据检测,缺段就直接走数据错误的流程,这个很大程度上避免了不少nullpoi ...
- 深入了解Redis【二】对象及数据结构综述
引言 Redis中每个键值对都是由对象组成: 键总是一个字符串对象(string) 值可以是字符串对象(string).列表对象(list).哈希对象(hash).集合对象(set).有序集合对象(z ...
- .net core中使用jwt进行认证
JSON Web Token(JWT)是一个开放标准(RFC 7519),它定义了一种紧凑且自包含的方式,用于在各方之间作为JSON对象安全地传输信息.由于此信息是经过数字签名的,因此可以被验证和信任 ...
- 8成以上的java线程状态图都画错了,看看这个-图解java并发第二篇
本文作为图解java并发编程的第二篇,前一篇访问地址如下所示: 图解进程线程.互斥锁与信号量-看完还不懂你来打我 图形说明 在开始想写这篇文章之前,我去网上搜索了很多关于线程状态转换的图,我惊讶的发现 ...
- SMBMS
SMBMS(Supermarket Billing Management System ) 目录 SMBMS(Supermarket Billing Management System ) 1. 项目 ...
- Mysql主从分离与双机热备超详细配置
一.概述 本例是在Windows环境,基于一台已经安装好的Mysql57,在本机安装第二台Mysql57服务. 读完本篇内容,你可以了解到Mysql的主从分离与双机热备的知识,以及配置期间问题的解决方 ...
- python3中抛异常except后面参数
try: xxx except exception as e: print("给exception取了个别名叫做e") else: ccc
- 高可用集群之keepalived+lvs实战2
keepalived简介 lvs在我之前的博客<高负载集群实战之lvs负载均衡-技术流ken>中已经进行了详细的介绍和应用,在这里就不再赘述.这篇博文将把lvs与keepalived相结合 ...