1、问题描述

  给定两个数组A与B,其大小分别为m、n,假定它们都是已按照增序排序的数组,我们用尽可能快的方法去求两个数组合并后第k大的元素,其中,1\le k\le(m+n)。例如,对于数组A=[1,3,5,7,9],B=[2,4,6,8]。我们记第k大的数为max_{k-th},则k=4时,max_{4-th}=4。这是因为排序之后的数组A+B=[1,2,3,4,5,6,7,8,9],第4大的数是4。我们针对这一个问题进行探讨。

2、算法一

  第一眼看到这个题的时候,我们能够很快地想出来最基本的一种解法:对数组A和B进行合并,然后求出其第k大的数,即找到答案。合并的过程,我们可以参考归并排序的合并子数组的过程,时间复杂度为O(m+n)。下面给出算法:

int findKthMaxNumOfArrays(int *a,int m,int *b,int n,int k)
{
int *p=a;
int *q=b;
int i=;
int j=;
int cur=;
while(i<m&&j<n)
{
if(a[i]<b[j])
{
cur++;
if(cur==k) return a[i];
i++;
}
else
{
cur++;
if(cur==k) return b[j];
j++;
}
}
while(i<m)
{
cur++;
if(cur==k) return a[i];
i++;
}
while(j<n)
{
cur++;
if(cur==k) return b[j];
j++;
}
}

3、算法二

  实际上算法一的时间复杂度已经是线性的了。可是,是否存在更快的算法能够完成这项任务呢?答案是肯定的,时间复杂度可以缩短到O(log(m+n))时间内。在这种算法中,二分的思想十分重要。我们将数组A分为两半,前一部分的大小为\left \lfloor \frac{m}{2} \right \rfloor,后一部分为m- \left \lfloor \frac{m}{2} \right \rfloor;数组B同时分为这样两部分,第一部分的大小为\left \lfloor \frac{n}{2} \right \rfloor,第二部分的大小为n- \left \lfloor \frac{n}{2} \right \rfloor。如下图所示:

通过a_{\frac{m}{2}}与b_{\frac{n}{2}},我们将每个数组分为2部分,分别记为A1、A2和B1、B2。假定b_{\frac{n}{2}} \ge a_{\frac{m}{2}},如果不是,我们只需要交换A、B两个数组即可。接下来,我们看第k大的数落在了哪个区间里面,令t=a_{\frac{m}{2}}+b_{\frac{n}{2}}+1,这个t实际上是包含了A1,a_{\frac{m}{2}},B1。如果k\le t时,则说明max_{k-th}肯定不在B2里面,这是由于:B2中的所有数\ge b_{\frac{n}{2}},而b_{\frac{n}{2}} \ge A1,B1中的所有数与a_{\frac{m}{2}},而这部分数总共有t个,说明b_{\frac{n}{2}}起码是第t+1个,若max_{k-th}出现在B2中,则说明k\ge t+1,与假设矛盾。我们可以得出该结论。因此,在判断之后,我们可以剔除数组B的B2部分,然后再在新数组中寻找;另外,如果k\ge t,则说明max_{k-th}肯定不在A1部分,这部分的证明同上一个证明相同,不再赘述。同样地,在判断之后,我们可以剔除数组A的A1部分,然后再在新数组中寻找。基于这样一种思想,我们每次迭代,都删除了其中一个数组中一半的元素,时间复杂度大约可认为是O(log(m+n))。

  在实现的时候,我们需要特别注意边界条件,详细的代码如下:

int findKthMaxNumOfArrays(int *A, int m, int *B, int n, int k)
{
if(m == )return B[k-];
if(n == )return A[k-];
int i = m>>, j = n>>, *p, *q, t;
if(A[i] <= B[j])p = A, q = B;
else p = B, q = A, swap(i, j), swap(m, n);
t = i + j + ;
if(t >= k)return findKthMaxNumOfArrays(p, m, q, j, k);
else if(t < k)return findKthMaxNumOfArrays(p+i+, m-i-, q, n, k-i-);
}

算法二

4、扩展问题

  通过算法二,我们很容易地解决一个类似的问题:求两个已序数组A,B的中位数。所谓的中位数,对于一个有n个元素的已序数组,如果n是奇数,则中位数是第\frac{n+1}{2}个元素的值;如果n是偶数,则它的中位数是第\frac{n}{2}与第\frac{n}{2}+1数的平均值。对于m+n为奇数,则利用算法二求第\frac{n+m+1}{2}个元素的值即可,对于m+n为偶数,利用算法二求第\frac{m+n}{2}个与第\frac{m+n}{2}+1个元素的值,求其平均值即可。

  对于这个问题,在LeetCode中有另外一种解法,但是阅读后发现其需要处理的个别case太多,相比而言没有本文所介绍的算法简洁。如果想要了解,给出链接:http://leetcode.com/2011/03/median-of-two-sorted-arrays.html

【算法剖析】寻找两个已序数组中的第k大元素的更多相关文章

  1. 寻找两个已序数组中的第k大元素

    寻找两个已序数组中的第k大元素 1.问题描述 给定两个数组与,其大小分别为.,假定它们都是已按照增序排序的数组,我们用尽可能快的方法去求两个数组合并后第大的元素,其中,.例如,对于数组,.我们记第大的 ...

  2. leetcode-4. 寻找两个正序数组的中位数

    leetcode-4. 寻找两个正序数组的中位数. 给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2. 请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(l ...

  3. 17082 两个有序数序列中找第k小

    17082 两个有序数序列中找第k小 时间限制:1000MS  内存限制:65535K 提交次数:0 通过次数:0 题型: 编程题   语言: 无限制 Description 已知两个已经排好序(非减 ...

  4. 17082 两个有序数序列中找第k小(优先做)

    17082 两个有序数序列中找第k小(优先做) 时间限制:1000MS  内存限制:65535K提交次数:0 通过次数:0 题型: 编程题   语言: G++;GCC;VC Description 已 ...

  5. 17082 两个有序数序列中找第k小(优先做) O(logn)

    17082 两个有序数序列中找第k小(优先做) 时间限制:1000MS  内存限制:65535K提交次数:0 通过次数:0 题型: 编程题   语言: G++;GCC;VC Description 已 ...

  6. 如何寻找无序数组中的第K大元素?

    如何寻找无序数组中的第K大元素? 有这样一个算法题:有一个无序数组,要求找出数组中的第K大元素.比如给定的无序数组如下所示: 如果k=6,也就是要寻找第6大的元素,很显然,数组中第一大元素是24,第二 ...

  7. 算法导论学习之线性时间求第k小元素+堆思想求前k大元素

    对于曾经,假设要我求第k小元素.或者是求前k大元素,我可能会将元素先排序,然后就直接求出来了,可是如今有了更好的思路. 一.线性时间内求第k小元素 这个算法又是一个基于分治思想的算法. 其详细的分治思 ...

  8. 如何用快排思想在O(n)内查找第K大元素--极客时间王争《数据结构和算法之美》

    前言 半年前在极客时间订阅了王争的<数据结构和算法之美>,现在决定认真去看看.看到如何用快排思想在O(n)内查找第K大元素这一章节时发现王争对归并和快排的理解非常透彻,讲得也非常好,所以想 ...

  9. 记录我对&#39;我们有成熟的时间复杂度为O(n)的算法得到数组中任意第k大的数&#39;的误解

    这篇博客记录我对剑指offer第2版"面试题39:数组中出现次数超过一半的数字"题解1的一句话的一个小误解,以及汇总一下涉及partition算法的相关题目. 在剑指offer第2 ...

随机推荐

  1. 猖獗的假新闻:2017年1月1日起iOS的APP必须使用HTTPS

    一.假新闻如此猖獗 刚才一位老同事 打电话问:我们公司还是用的HTTP,马上就到2017年了,提交AppStore会被拒绝,怎么办? 公司里已经有很多人问过这个问题,回答一下: HTTP还是可以正常提 ...

  2. poj3190 stall revertation

                                                                                                Stall Re ...

  3. mongoDb c driver

    1,yum dependencies Centos,RHEL Fedora: $ sudo yum install git gcc automake autoconf libtool Debian: ...

  4. POJ 3685 二分套二分

    Matrix Given a N × N matrix A, whose element in the i-th row and j-th column Aij is an number that e ...

  5. powerdesinger(MSSQLSRV2008测试通过)通过Name或comment 导出注释到sql脚本,生成sql的说明备注,包括表注释信息

    导出字段信息name注释到sql2008字段的说明 在database -> edit current dbms -> MSSQLSRV2008::Script\Objects\Colum ...

  6. 【BZOJ4407】于神之怒加强版(莫比乌斯反演)

    [BZOJ4407]于神之怒加强版(莫比乌斯反演) 题面 BZOJ 求: \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)^k\] 题解 根据惯用套路 把公约数提出来 \[\sum ...

  7. PHP获取数组最后一个元素的键和值

    <?php /** * PHP获取数组中最后一个元素下标和值 */ $arr = ['1' => 'name', '3' => 2, 5 => 6, 'name' => ...

  8. JavaScript各种继承方式(一):原型链继承(prototype chaining)

    一 原理 子类的构造函数的原型对象,是父类的构造函数创建的实例. function Fruit(){ this.name = '水果'; this.nutrition=['维生素','膳食纤维']; ...

  9. 11.事件驱动events

    事件驱动events ==> events.EventEmitter, EventEmitter 的核心就是事件发射与事件监听器功能的封装更详细的 API 文档参见 http://nodejs. ...

  10. 郑轻校赛 2127 tmk射气球 (数学)

    Description 有一天TMK在做一个飞艇环游世界,突然他发现有一个气球匀速沿直线飘过,tmk想起了他飞艇上有一把弓,他打算拿弓去射气球,为了提高射击的准确性,他首先在飞艇上找到一个离气球最近的 ...