转载

http://www.cardinalpeak.com/blog/worlds-smallest-h-264-encoder/

View from the Peak

World’s Smallest h.264 Encoder

March 19th, 2010 by Ben Mesander

Recently I have been studying the h.264 video codec and reading the ISO spec. h.264 a much more sophisticated codec than MPEG-2, which means that a well-implemented h.264 encoder has more compression tools at its disposal than the equivalent MPEG-2 encoder. But all that sophistication comes at a price: h.264 also has a big, complicated specification with a plethora of options, many of which are not commonly used, and it takes expertise to understand which parts are important to solve a given problem.

As a bit of a parlor trick, I decided to write the simplest possible h.264 encoder. I was able to do it in about 30 lines of code—although truth in advertising compels me to admit that it doesn’t actually compress the video at all!

While I don’t want to balloon this blog post with a detailed description of h.264, a little background is in order. An h.264 stream contains the encoded video data along with various parameters needed by a decoder in order to decode the video data. To structure this data, the bitstream consists of a sequence of Network Abstraction Layer (NAL) units.

Previous MPEG specifications allowed pictures to be coded as I-frames, P-frames, or B-frames. h.264 is more complex and wonderful. It allows individual frames to be coded as multiple slices, each of which can be of type I, P, or B, or even more esoteric types. This feature can be used in creative ways to achieve different video coding goals. In our encoder we will use one slice per frame for simplicity, and we will use all I-frames.

As with previous MPEG specifications, in h.264 each slice consists of one or more 16×16 macroblocks. Each macroblock in our 4:2:0 sampling scheme contains 16×16 luma samples, and two 8×8 blocks of chroma samples. For this simple encoder, I won’t be compressing the video data at all, so the samples will be directly copied into the h.264 output.

With that background in mind, for our simplest possible encoder, there are three NALs we have to emit:

  1. Sequence Parameter Set (SPS): Once per stream
  2. Picture Parameter Set (PPS): Once per stream
  3. Slice Header: Once per video frame
    1. Slice Header information
    2. Macroblock Header: Once per macroblock
    3. Coded Macroblock Data: The actual coded video for the macroblock

Since the SPS, the PPS, and the slice header are static for this application, I was able to hand-code them and include them in my encoder as a sequence of magic bits.

Putting it all together, I came up with the following code for what I call “hello264”:

#include <stdio.h>
#include <stdlib.h>
/* SQCIF */
#define LUMA_WIDTH 128
#define LUMA_HEIGHT 96
#define CHROMA_WIDTH LUMA_WIDTH / 2
#define CHROMA_HEIGHT LUMA_HEIGHT / 2
/* YUV planar data, as written by ffmpeg */
typedef struct
{
uint8_t Y[LUMA_HEIGHT][LUMA_WIDTH];
uint8_t Cb[CHROMA_HEIGHT][CHROMA_WIDTH];
uint8_t Cr[CHROMA_HEIGHT][CHROMA_WIDTH];
} __attribute__((__packed__)) frame_t;
frame_t frame;
/* H.264 bitstreams */
const uint8_t sps[] = { 0x00, 0x00, 0x00, 0x01, 0x67, 0x42, 0x00,
0x0a, 0xf8, 0x41, 0xa2 };
const uint8_t pps[] = { 0x00, 0x00, 0x00, 0x01, 0x68, 0xce,
0x38, 0x80 };
const uint8_t slice_header[] = { 0x00, 0x00, 0x00, 0x01, 0x05, 0x88,
0x84, 0x21, 0xa0 };
const uint8_t macroblock_header[] = { 0x0d, 0x00 };
/* Write a macroblock's worth of YUV data in I_PCM mode */
void macroblock(const int i, const int j)
{
int x, y;
if (! ((i == 0) && (j == 0)))
{
fwrite(&macroblock_header, 1, sizeof(macroblock_header),
stdout);
}
for(x = i*16; x < (i+1)*16; x++)
for (y = j*16; y < (j+1)*16; y++)
fwrite(&frame.Y[x][y], 1, 1, stdout);
for (x = i*8; x < (i+1)*8; x++)
for (y = j*8; y < (j+1)*8; y++)
fwrite(&frame.Cb[x][y], 1, 1, stdout);
for (x = i*8; x < (i+1)*8; x++)
for (y = j*8; y < (j+1)*8; y++)
fwrite(&frame.Cr[x][y], 1, 1, stdout);
}
/* Write out PPS, SPS, and loop over input, writing out I slices */
int main(int argc, char **argv)
{
int i, j;
fwrite(sps, 1, sizeof(sps), stdout);
fwrite(pps, 1, sizeof(pps), stdout);
while (! feof(stdin))
{
fread(&frame, 1, sizeof(frame), stdin);
fwrite(slice_header, 1, sizeof(slice_header), stdout);
for (i = 0; i < LUMA_HEIGHT/16 ; i++)
for (j = 0; j < LUMA_WIDTH/16; j++)
macroblock(i, j);
fputc(0x80, stdout); /* slice stop bit */
}
return 0;
}

(This source code is available as a single file here.)

In main(), the encoder writes out the SPS and PPS. Then it reads YUV data from standard input, stores it in a frame buffer, and then writes out a h.264 slice header. It then loops over each macroblock in the frame and calls the macroblock() function to output a macroblock header indicating the macroblock is coded as I_PCM, and inserts the YUV data.

To use the code, you will need some uncompressed video. To generate this, I used the ffmpeg package to convert a QuickTime movie from my Kodak Zi8 video camera from h.264 to SQCIF (128×96) planar YUV format sampled at 4:2:0:

ffmpeg.exe -i angel.mov -s sqcif -pix_fmt yuv420p angel.yuv

I compile the h.264 encoder:

gcc –Wall –ansi hello264.c –o hello264

And run it:

hello264 <angel.yuv >angel.264

Finally, I use ffmpeg to copy the raw h.264 NAL units into an MP4 file:

ffmpeg.exe -f h264 -i angel.264 -vcodec copy angel.mp4

Here is the resulting output:

There you have it—a complete h.264 encoder that uses minimal CPU cycles, with output larger than its input!

The next thing to add to this encoder would be CAVLC coding of macroblocks and intra prediction. The encoder would still be lossless at this point, but there would start to be compression of data. After that, the next logical step would be quantization to allow lossy compression, and then I would add P slices. As a development methodology, I prefer to bring up a simplistic version of an application, get it running, and then add refinements iteratively.

UPDATE 4/20/11: I’ve written more about the Sequence Parameter Set (SPS) here.

Ben Mesander has more than 18 years of experience leading software development teams and implementing software. His strengths include Linux, C, C++, numerical methods, control systems and digital signal processing. His experience includes embedded software, scientific software and enterprise software development environments.

World’s Smallest h.264 Encoder的更多相关文章

  1. The h.264 Sequence Parameter Set

    转债:  http://www.cardinalpeak.com/blog/the-h-264-sequence-parameter-set/ View from the Peak The h.264 ...

  2. H.264开源解码器评测

    转自:http://wmnmtm.blog.163.com/blog/static/38245714201142883032575/ 要播放HDTV,就首先要正确地解开封装,然后进行视频音频解码.所以 ...

  3. H.264 Profile、Level、Encoder三张简图 (fps = AVCodecContext-&gt;time_base.den / AVCodecContext-&gt;time_base.num)

    H.264 Profiles Profiles are sets of capabilities. If your black box only supports the Baseline profi ...

  4. H.264视频的RTP荷载格式

    Status of This Memo This document specifies an Internet standards track protocol for the   Internet ...

  5. 使用VideoToolbox硬编码H.264&lt;转&gt;

    文/落影loyinglin(简书作者)原文链接:http://www.jianshu.com/p/37784e363b8a著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”. ======= ...

  6. H.264 / MPEG-4 Part 10 White Paper-翻译

    1. Introduction Broadcast(广播) television and home entertainment(娱乐) have been revolutionised(彻底改变) b ...

  7. 转:MediaCoder H.264格式编码参数设置及详解

    转: http://mediacoder.com.cn/node/81 由于现在大部分视频转码都选择H.264格式进行编码,同时CUDA编码的画质还达不到x264软编码的质量(如果你对画质无要求,可以 ...

  8. C++实现RTMP协议发送H.264编码及AAC编码的音视频

    http://www.cnblogs.com/haibindev/archive/2011/12/29/2305712.html C++实现RTMP协议发送H.264编码及AAC编码的音视频 RTMP ...

  9. C++实现RTMP协议发送H.264编码及AAC编码的音视频(转)

    C++实现RTMP协议发送H.264编码及AAC编码的音视频(转) RTMP(Real Time Messaging Protocol)是专门用来传输音视频数据的流媒体协议,最初由Macromedia ...

随机推荐

  1. JavaScript通过ID获取元素坐标

    JavaScript通过ID获取元素坐标 function getElementPos(elementId) {    var ua = navigator.userAgent.toLowerCase ...

  2. ARM指令教程

    ARM指令教程 ARM汇编程序特点: l         所有运算处理都是发生通用寄存器(一般是R0~R14)的之中.所有存储器空间(如C语言变量的本质就是一个存储器空间上的几个BYTE).的值的处理 ...

  3. 利用Aspose.Pdf将扫描的电子书修改为适合在kindle上查看

    很多扫描版的电子书,留有很大的页边距,大屏的设备看起来没有啥影响,可是在kindle上看起来就麻烦了,放大操作简直就没法用,最好能把留白去掉. 将pdf文件转换为图片这个看看 例子里的 JpegDev ...

  4. mac下java 开发环境搭建

    mac配置java开发环境: jdk1.7 +sdk1.7+maven +tomcat   1.先安装jdk ,才能安装sdk . 2 mac中jdk1.7的默认位置:/Library/Java/Ja ...

  5. Html/Css(新手入门第一篇)

    一.理解web标准含义--为什么采用web标准*****将内容与样式分离1.web标准是一系列标准,就是一系列技术标准在使用时,是组合应用[1].结构化内容 html[2].表现化内容 css[3]. ...

  6. java poi导入EXCEL xls文件代码

    /** * */ package com.bn.car.common.report.excel; import java.io.FileInputStream; import java.io.IOEx ...

  7. 让图片在DIV中垂直居中

    window.onload=function(){ var img = document.getElementById("imgdiv"); var div = document. ...

  8. 给UIImage添加蒙版

    http://stackoverflow.com/questions/17448102/ios-masking-an-image-keeping-retina-scale-factor-in-acco ...

  9. 事务应用-运行多条SQL语句

    事务具有原子性,要么不运行,要么全运行,一旦成功运行永久保存.而这些正是因为事务的原子性和对数据库的持久性形成的.下面是一个关于统一给数据库中的数据改动的批量操作,利用到事务. TODO:批量改动数据 ...

  10. FZU 2122 又见LKity(KMP+返回所有匹配位置)

    基础kmp应用,找到所有匹配位置即可 #include<stdio.h> #include<string.h> #include<algorithm> #inclu ...