摘自:http://blog.csdn.net/wuhuan_wp/article/details/7010071

一致性哈希算法是分布式系统中常用的算法。比如,一个分布式的存储系统,要将数据存储到具体的节点上,如果采用普通的hash方法,将数据映射到具体的节点上,如key%N,key是数据的key,N是机器节点数,如果有一个机器加入或退出这个集群,则所有的数据映射都无效了,如果是持久化存储则要做数据迁移,如果是分布式缓存,则其他缓存就失效了。

因此,引入了一致性哈希算法:

把数据用hash函数(如MD5),映射到一个很大的空间里,如图所示。数据的存储时,先得到一个hash值,对应到这个环中的每个位置,如k1对应到了图中所示的位置,然后沿顺时针找到一个机器节点B,将k1存储到B这个节点中。

如果B节点宕机了,则B上的数据就会落到C节点上,如下图所示:

这样,只会影响C节点,对其他的节点A,D的数据不会造成影响。然而,这又会造成一个“雪崩”的情况,即C节点由于承担了B节点的数据,所以C节点的负载会变高,C节点很容易也宕机,这样依次下去,这样造成整个集群都挂了。

为此,引入了“虚拟节点”的概念:即把想象在这个环上有很多“虚拟节点”,数据的存储是沿着环的顺时针方向找一个虚拟节点,每个虚拟节点都会关联到一个真实节点,如下图所使用:

图中的A1、A2、B1、B2、C1、C2、D1、D2都是虚拟节点,机器A负载存储A1、A2的数据,机器B负载存储B1、B2的数据,机器C负载存储C1、C2的数据。由于这些虚拟节点数量很多,均匀分布,因此不会造成“雪崩”现象。

Java实现:

    1. public class Shard<S> { // S类封装了机器节点的信息 ,如name、password、ip、port等
    2. private TreeMap<Long, S> nodes; // 虚拟节点
    3. private List<S> shards; // 真实机器节点
    4. private final int NODE_NUM = 100; // 每个机器节点关联的虚拟节点个数
    5. public Shard(List<S> shards) {
    6. super();
    7. this.shards = shards;
    8. init();
    9. }
    10. private void init() { // 初始化一致性hash环
    11. nodes = new TreeMap<Long, S>();
    12. for (int i = 0; i != shards.size(); ++i) { // 每个真实机器节点都需要关联虚拟节点
    13. final S shardInfo = shards.get(i);
    14. for (int n = 0; n < NODE_NUM; n++)
    15. // 一个真实机器节点关联NODE_NUM个虚拟节点
    16. nodes.put(hash("SHARD-" + i + "-NODE-" + n), shardInfo);
    17. }
    18. }
    19. public S getShardInfo(String key) {
    20. SortedMap<Long, S> tail = nodes.tailMap(hash(key)); // 沿环的顺时针找到一个虚拟节点
    21. if (tail.size() == 0) {
    22. return nodes.get(nodes.firstKey());
    23. }
    24. return tail.get(tail.firstKey()); // 返回该虚拟节点对应的真实机器节点的信息
    25. }
    26. /**
    27. *  MurMurHash算法,是非加密HASH算法,性能很高,
    28. *  比传统的CRC32,MD5,SHA-1(这两个算法都是加密HASH算法,复杂度本身就很高,带来的性能上的损害也不可避免)
    29. *  等HASH算法要快很多,而且据说这个算法的碰撞率很低.
    30. *  http://murmurhash.googlepages.com/
    31. */
    32. private Long hash(String key) {
    33. ByteBuffer buf = ByteBuffer.wrap(key.getBytes());
    34. int seed = 0x1234ABCD;
    35. ByteOrder byteOrder = buf.order();
    36. buf.order(ByteOrder.LITTLE_ENDIAN);
    37. long m = 0xc6a4a7935bd1e995L;
    38. int r = 47;
    39. long h = seed ^ (buf.remaining() * m);
    40. long k;
    41. while (buf.remaining() >= 8) {
    42. k = buf.getLong();
    43. k *= m;
    44. k ^= k >>> r;
    45. k *= m;
    46. h ^= k;
    47. h *= m;
    48. }
    49. if (buf.remaining() > 0) {
    50. ByteBuffer finish = ByteBuffer.allocate(8).order(
    51. ByteOrder.LITTLE_ENDIAN);
    52. // for big-endian version, do this first:
    53. // finish.position(8-buf.remaining());
    54. finish.put(buf).rewind();
    55. h ^= finish.getLong();
    56. h *= m;
    57. }
    58. h ^= h >>> r;
    59. h *= m;
    60. h ^= h >>> r;
    61. buf.order(byteOrder);
    62. return h;
    63. }
    64. }

Java_一致性哈希算法与Java实现的更多相关文章

  1. 一致性哈希算法与Java实现

    原文:http://blog.csdn.net/wuhuan_wp/article/details/7010071 一致性哈希算法是分布式系统中常用的算法.比如,一个分布式的存储系统,要将数据存储到具 ...

  2. 负载均衡-基础-一致性哈希算法及java实现

    一致性hash算法,参考: http://www.blogjava.net/hello-yun/archive/2012/10/10/389289.html 针对这篇文章,加入了自己的理解,在原有的代 ...

  3. 一致性哈希算法(consistent hashing)(转)

    原文链接:每天进步一点点——五分钟理解一致性哈希算法(consistent hashing)  一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网 ...

  4. 一致性哈希算法学习及JAVA代码实现分析

    1,对于待存储的海量数据,如何将它们分配到各个机器中去?---数据分片与路由 当数据量很大时,通过改善单机硬件资源的纵向扩充方式来存储数据变得越来越不适用,而通过增加机器数目来获得水平横向扩展的方式则 ...

  5. 一致性哈希算法原理及Java实现

     一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单 ...

  6. 一致性哈希算法原理、避免数据热点方法及Java实现

     一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单 ...

  7. 一致性哈希算法——算法解决的核心问题是当slot数发生变化时,能够尽量少的移动数据

    一致性哈希算法 摘自:http://blog.codinglabs.org/articles/consistent-hashing.html 算法简述 一致性哈希算法(Consistent Hashi ...

  8. _00013 一致性哈希算法 Consistent Hashing 新的讨论,并出现相应的解决

    笔者博文:妳那伊抹微笑 博客地址:http://blog.csdn.net/u012185296 个性签名:世界上最遥远的距离不是天涯,也不是海角,而是我站在妳的面前.妳却感觉不到我的存在 技术方向: ...

  9. 一致性哈希算法(Consistent Hashing) .

    应用场景 这里我先描述一个极其简单的业务场景:用4台Cache服务器缓存所有Object. 那么我将如何把一个Object映射至对应的Cache服务器呢?最简单的方法设置缓存规则:object.has ...

随机推荐

  1. Monkey的ADB命令简单使用示例和解析

    进行简单的压力测试: 1. adb shell monkey –p 包名 –v-v 3000 >E:\bugLog.txt -v -v 标识打印的日志的详细级别为2级,更高级有3级,也可以用1级 ...

  2. 如何为logo配色

    原网链接:http://design.jobbole.com/125287/ 色彩是带有情绪的.我们能感知到的色彩能带来各种各样的情绪,也能传达一种思想或一种文化. 企业logo的色彩就是利用上面的原 ...

  3. tachyon with spark

    spark1.2.0  tachyon0.5.0 jdk1.7 scala2.10.4 1.装好spark.tachyon.jdk.scala 2.修改spark-env.sh添加Tachyon客户端 ...

  4. Ubuntu系统应用程序创建快捷方式的方法

    大家安装了最新版的Ubuntu 14.0系统之后可能觉得很不习惯,因为Ubuntu的桌面干干净净没有任何快捷方式,任务栏的图标拖不下来,右键点击程序图标也没有创建快捷方式的菜单选项: 那如何把自己经常 ...

  5. bzoj1084

    乍一看这题好难,根本不会: 直到看到1<=m<=2…… 显然分类讨论dp, 很快想到这题的dp和poj2430相类似 m=2的时候f[i,j,k]表示到第i行用了j个矩阵结尾状态为k时最大 ...

  6. 关于通过bindService启动的service,在unbindService后service是否继续运行的讨论

    有三种情况:如果直接使用服务,则没有必要进行绑定,但是如果要使用服务里面的方法,则要进行绑定.具体的启动情况有下: 1.当启动时,单独调用bindService方法,在unbindService后,会 ...

  7. Nubia Z5S(高通公司MSM8974) QHSUSB_BULK砖的方法节省模式(随着win7在恢复recovery分区案例)

    Nubia Z5S在某些异常情况或按组合键进入QHSUSB_BULK状态, 这种模式的现象, 猜想windows(实例win7)即使在数据线, 它会出现在计算机n载,甚至会提示要格式化某些分区(这里要 ...

  8. Codeforces 895C - Square Subsets 状压DP

    题意: 给了n个数,要求有几个子集使子集中元素的和为一个数的平方. 题解: 因为每个数都可以分解为质数的乘积,所有的数都小于70,所以在小于70的数中一共只有19个质数.可以使用状压DP,每一位上0表 ...

  9. C#设计模式(11)——外观模式(Facade Pattern)(转)

    一.引言 在软件开发过程中,客户端程序经常会与复杂系统的内部子系统进行耦合,从而导致客户端程序随着子系统的变化而变化,然而为了将复杂系统的内部子系统与客户端之间的依赖解耦,从而就有了外观模式,也称作 ...

  10. 高性能迷你React框架anujs1.1.0发布

    本版本对setState与forceUpdate内部依赖的setStateImpl进行了重构,性能稳定在60pfs之上.并且将组件实例的所有内部方法与属性都改成以___开头. https://gith ...