Cot
题目大意
两种操作
给坐标上一个直角三角形中每个整点权值$+1$
求坐标上一个直角三角形中每个整点权值之和
题解
一顿分析思考加推导之后,发现并不存在这样的数据结构(大概是有,只是我不知道),于是考虑分块暴力。
我们记录两个前缀和
$p_{x,y}$表示$(x,y)$点权
$R_{x,y}=\sum\limits_{i=1}^{x}\sum\limits_{j=1}^{\min(y,i)}p_{i,j}$
$T_{x,y}=\sum\limits_{i=x-y+1}^{x}\sum\limits_{j=1}^{\min(y,i)}p_{i,j}$
形象化的就长这样
于是我们可以通过这两个前缀和加上简单的容斥解决任意一个三角形的和。
修改这样的,考虑差分
对修改数进行分块,设块长为$B$,则对于每次修改,我们考虑对平面打差分表记,你会发现如果利用朴素二维前缀和的计算方式差分每个点的值会很麻烦,直接考虑对于每一个$x$维护$y$从小到大的的话标记会是这样(红色的是要整体$+1$的三角形)
这样做一次是$O(N)$,虽然能过,不过这个$O(N)$可以变成O$(1)$的。我们对于差分的标记进行查分,维护一个从左向右的差分和从左下到右上的差分即可。
然后对于每$B$次修改,我们直接暴力重构一边当前的$T,R$,即先扫一遍差分标记的差分标记,然后差分出点的值,再更新$T,R$。对于每次询问,我们用之前修改过的整块的答案$O(1)$算出来三角形的值,再扫一遍最近的不到$B$次的修改,两个三角形面积$O(1)$求交更新答案即可。
不妨设修改询问均为$Q$次,则复杂度为$O(N^2\frac QB+Q\cdot B)$。
不难发现,当$B$取$N$时,复杂度会严格优于$O(QN)$。
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define M 1010
#define BC 2500
#define mid ((l+r)>>1)
using namespace std;
LL read(){
LL nm=0,fh=1; char cw=getchar();
for(;!isdigit(cw);cw=getchar()) if(cw=='-') fh=-fh;
for(;isdigit(cw);cw=getchar()) nm=nm*10+(cw-'0');
return nm*fh;
}
const int n=read();
int tg1[M][M],tg2[M][M],p1[M][M],p2[M][M],qx[M<<2],qy[M<<2],qd[M<<2],cnt;
int F[M][M],val[M][M];
LL R[M][M],T[M][M];
void solve(){
for(int i=1;i<=n;i++){
for(int j=1;j<=i;j++){
p1[i][j]+=p1[i-1][j],p2[i][j]+=p2[i-1][j-1];
F[i][j]=F[i][j-1]+p1[i][j]+p2[i][j],val[i][j]+=F[i][j];
R[i][j]=R[i-1][j]+R[i][j-1]-R[i-1][j-1],R[i][j]+=val[i][j];
T[i][j]=T[i-1][j-1]+R[i][j-1]-R[i-1][j-1],T[i][j]+=val[i][j];
}
}
memset(p1,0,sizeof(p1));
memset(p2,0,sizeof(p2));
}
LL getans(int x,int y,int k){
LL sum=0;
for(int i=1;i<=cnt;i++){
int flr=max(y,qy[i]),rs=min(x+k-1,qx[i]+qd[i]-1);
int ctx=max(x-y,qx[i]-qy[i]); LL len=rs-(ctx+flr)+1;
if(len>0) sum+=((len*(len+1))>>1);
} return sum;
}
int main(){
for(int tpe,x,y,dt,Q=read();Q;Q--){
tpe=read(),x=read(),y=read(),dt=read();
if(tpe==1){
++cnt,qx[cnt]=x,qy[cnt]=y,qd[cnt]=dt;
p1[x][y]++,p1[x+dt][y]--,p2[x][y+1]--,p2[x+dt][y+dt+1]++;
if(cnt==BC) solve(),cnt=0; continue;
}
LL ans=T[x+dt-1][y+dt-1]-T[x-1][y-1];
ans-=R[x+dt-1][y-1]-R[x-1][y-1];
ans+=getans(x,y,dt),printf("%lld\n",ans);
}
return 0;
}
Cot的更多相关文章
- spoj cot: Count on a tree 主席树
10628. Count on a tree Problem code: COT You are given a tree with N nodes.The tree nodes are number ...
- spoj COT - Count on a tree (树上第K小 LCA+主席树)
链接: https://www.spoj.com/problems/COT/en/ 思路: 首先看到求两点之前的第k小很容易想到用主席树去写,但是主席树处理的是线性结构,而这道题要求的是树形结构,我们 ...
- cos,sina,tan,cot
这些都是三角形的公式. 三角形总之就是一个直角两个锐角. cos就是余弦定理,就是锐角的邻边除以三角形的斜边. sin就是正弦定理,就是锐角的对边除以三角形的斜边. tan就是正切定理,就是锐角的对边 ...
- Count on a tree(SPOJ COT + 树上第k大 + 主席树 + LCA)
题目链接:https://www.spoj.com/problems/COT/en/ 题目: 题意: 给你一棵有n个节点的树,求节点u到节点v这条链上的第k大. 思路: 我们首先用dfs进行建题目给的 ...
- SPOJ - COT Count on a tree
地址:http://www.spoj.com/problems/COT/en/ 题目: COT - Count on a tree #tree You are given a tree with N ...
- 正割、余割、正弦、余弦、正切、余切之间的关系的公式 sec、csc与sin、cos、tan、cot之间的各种公式
1.倒数关系 tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 2.商数关系 tanα=sinα/cosα cotα=cosα/sinα 3.平方关系 sinα²+cosα ...
- SPOJ 10628 COT - Count on a tree(在树上建立主席树)(LCA)
COT - Count on a tree #tree You are given a tree with N nodes.The tree nodes are numbered from 1 to ...
- 【学术篇】SPOJ COT 树上主席树
这是学完主席树去写的第二道题_(:з」∠)_ 之前用树上莫队水过了COT2... 其实COT也可以用树上莫队水过去不过好像复杂度要带个log还是怎么样可能会被卡常数.. 那就orz主席吧.... 写了 ...
- c/c++ 实现三角函数(不使用库函数) sin/cos/tan/cot
c/c++ 实现三角函数(不使用库函数) sin/cos/tan/cot #include <iostream> #include <cstdlib> #include < ...
- 【填坑向】spoj COT/bzoj2588 Count on a tree
这题是学主席树的时候就想写的,,, 但是当时没写(懒) 现在来填坑 = =日常调半天lca(考虑以后背板) 主席树还是蛮好写的,但是代码出现重复,不太好,导致调试的时候心里没底(虽然事实证明主席树部分 ...
随机推荐
- React antd嵌入百度编辑器(css加载不到等问题,'offsetWidth' of null)
之前有看过一些类似的文章,以为嵌入不会遇到太多坑 结果... 其他不说,先来描述下跳坑的过程 先定义Ueditor.js类,这个和网上版本类似 import React, { Component ...
- Android插件化(使用Small框架)
github: https://github.com/cayden/MySmall Android插件化(使用Small框架) 框架源代码 1. Create Project File->New ...
- B. Worms Codeforces Round #271 (div2)
B. Worms time limit per test 1 second memory limit per test 256 megabytes input standard input outpu ...
- 反射机制,jvm,class类型
[说明]这是上午完成的内容或者说是接触到的知识点,包括servlet简单的数据库连接,表格的显示需要用到的插件jstl,还有最最多的java反射原理的讲解 1)数据库的设计 2)编程中用到的知识点 3 ...
- 【BZOJ3563/3569】DZY Loves Chinese II 线性基神题
[BZOJ3563/3569]DZY Loves Chinese II Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以 ...
- 自然常数e的神奇之美
- php自定义函数: 遍历文件夹及其子文件夹
function traverse_folder($path = '.') { $current_dir = opendir($path); while(($file = readdir($curre ...
- CXF生成client注意事项
1. 在使用wsdl2java命令生成client文件时在Service的Java文件中面出现super构造错误,这是因为jax-ws2.2规约与java6冲突 故须要减少jax-ws规约版本号. ...
- Linux中各种压缩文件
.gz格式 压缩: gzip 文件名 解压: gzip -d 欲解压文件名 gunzip 欲解压文件名 说明: 1.只能压缩文件,不能压缩目录 2.压缩和解压的时候不保留原文件 .bz2格式 压缩: ...
- mysql 分页测试,
大环境:MySQL5.6 自己造了 27万数据, 一次性 查出来,会超时: 而分页跑,会查出来8s: 但是在少于27万时,直接查比 分页查快5倍: