转自:Bannings
http://blog.csdn.net/zhangao0086/article/details/

Analyzer(分词器)

分词器能以某种规则对关键字进行分词,将分好的词放到目录中,以作为检索到的条件,在创建索引时会使用到分词器,在搜索时也将用到分词器,这两个地方要使用同一个分词器,否则可能找不到结果.分词器一般的工作流程:

  1. 切分关键词
  2. 去除停用词
  3. 对于英文单词,把所有字母转为小写

注:有的分词器对英文支持的非常好,还能对英文单词进行时态还原.

停用词的概念

有些词在文本中出现的频率非常高,但是对文本所携带的信息基本不产生影响,例如英文的“a、an、the、of”,或中文的“的、了、着”,以及各种标点符号等,这样的词称为停用词(stop word).文本经过分词之后,停用词通常被过滤掉,不会被进行索引.在检索的时候,用户的查询中如果含有停用词,检索系统也会将其过滤掉(因为用户输入的查询字符串也要进行分词处理).排除停用词可以加快建立索引的速度,减小索引库文件的大小

常用的中文分词器

中文的分词比较复杂,因为不是一个字就是一个词,而且一个词在另外一个地方就可能不是一个词,如在"帽子和服装"中,"和服"就不是一个词.对于中文分词,通常有三种方式:

  • 单字分词
  • 二分法分词
  • 词典分词

单字分词:就是按照中文一个字一个字地进行分词.如:"我们是中国人",效果:"我"、"们"、"是"、"中"、"国"、"人".(StandardAnalyzer就是这样)

二分法分词:按两个字进行切分.如:"我们是中国人",效果:"我们"、"们是"、"是中"、"中国"、"国人".(CJKAnalyzer就是这样)

词库分词:按某种算法构造词,然后去匹配已建好的词库集合,如果匹配到就切分出来成为词语.通常词库分词被认为是最理想的中文分词算法.如:"我们是中国人",效果为:"我们"、"中国人".(使用极易分词的MMAnalyzer.可以使用极易分词,或者是庖丁分词分词器、IKAnalyzer等).

测试分词器

/**
 * 使用指定的分词器对指定的文本进行分词,并打印结果
 * @param analyzer
 * @param text
 * @throws Exception
 */
private void testAnalyzer(Analyzer analyzer, String text) throws Exception {
    System.out.println("当前使用的分词器:" + analyzer.getClass());
    TokenStream tokenStream = analyzer.tokenStream("content"new StringReader(text));
    tokenStream.addAttribute(TermAttribute.class);
    while (tokenStream.incrementToken()) {
        TermAttribute termAttribute = tokenStream.getAttribute(TermAttribute.class);
        System.out.println(termAttribute.term());
    }
}
 

Highlighter(高亮器)

在搜索结果中经常可以看到,自己搜索的关键字加上了一些效果,以突出显示,Lucene自然提供了这样的设置,我们需要用到Highlighter这个类,用之前需要配置好:

/**
 * Formatter:设置高亮器的格式,无参构造函数表示使用<b>标签
 * Scorer:Highlighter需要知道哪些关键词是需要高亮的,需要需要查询条件
 */
Formatter formatter = new SimpleHTMLFormatter();
Scorer scorer = new QueryScorer(query);
Highlighter highlighter = new Highlighter(formatter,scorer);
//除了上面两个以外,还需要生成一段摘要,以便搜索的时候显示,指定摘要的大小为20个字符
);
highlighter.setTextFragmenter(fragmenter);

只需要配置这三样就可以了,接着我们要在每一次获取Field对象数据的时候做一些工作,因为高亮器实际上就是在内容中加了一点样式,我们当然要指定在哪里加:

/**
 * 在循环获取每一条记录的时候,让高亮器找到需要高亮的关键词,
 * 要提供相应的分词器和告诉它高亮哪一个Field中的内容
 * 一次只能高亮一个Field,如需要高亮多个Field,需要写多次
 * 就像这样:
    String text1 = highlighter.getBestFragment(
        Configuration.analyzer, "title", 
        doc.get("title"));
 */
String text = highlighter.getBestFragment(Configuration.analyzer, "content", doc.get("content"));
if(text != null){
    doc.getField("content").setValue(text);
}

一定要放在循环里面,highlighter.getBestFragment()方法本身没有副作用,也就是不改变原有的值,返回一个改变后的结果,所以要手动地改变Field中原有的值,并且if的条件最好不要省略,有时候可以会有这样一种情况,出现关键字的位置在其他Field里面,所以如果当前高亮的属性值中没有出现搜索关键字,则返回null.

排序

排序有几种方式,最常用的也就是相关度排序,把最有可能是用户需要的数据放在前面.由高到低排序,默认即是使用相关度排序.当然,我们也可以控制相关度排分的比重,比如我们想让一条记录的得分加倍,就要在建立索引时,加几句操作:

Document doc = DocumentUtils.docConvert(article, Document.class);
//setBoost()方法需要一个float类型的参数,表示将相关度得分的因子增加多少倍
doc.setBoost(2F);
indexWriter.addDocument(doc);

这样加进去的索引,就会改变默认的相关度得分因子.如果我们想靠某个Field的值来排序也可以,默认是升序,如果是按某个Field的值来排序,那将不会生成相关度得分,因为没有必要.假设按ID进行升序排列:

Sort sort = new Sort(new SortField("id",SortField.INT));
,sort);

IndexSearcher的search()方法需要改成接收4个参数的重载方法,第二个参数需要一个Filter,这里不需要,就传入null,Sort需要知道按什么排序,由SortField的第一个构造参数指明,第二参数指明类型,接收一个int值,由SortField对象的常量值表示.还可以加入第三个参数:

Sort sort = new Sort(new SortField("id", SortField.INT, true));

表示是否倒序排序.也可以指定多个排序规则.由多个SortField组成第1顺序、第2顺序...

过滤

使用Filter可以对搜索结果进行过滤,以获得更小范围的结果.使用Filter对性能的影响很大(有可能会使查询慢上百倍).假如我要看ID从5到15的:

//第三个参数:是否包含最小值(5);第四个参数:是否包含最大值(15)
true,true);
//这个时候就不需要第四个参数来指定排序了,search()这个方法有很多重载版本
);

光这样写还不行,会看不到结果.这是因为要过滤的值,如果是数字,需要以指定的格式存储才行,否则将按字符串的方式来比较.

对于这个问题,需要引出一个工具类:NumericUtils,这个工具类专门做数值与数值或字符串间的转换工作.要在对象到Document以及Document到对象的转换的时候进行,这是对于数值,如果是日期类型,需要使用这个工具类:DateTools.

注:这样做了以后,可能还是不行,对于使用NumericUtils把数字转换为字符串,一定要使用Index.NOT_ANALYZED,以保存能够正确的使用Filter

其他搜索

首先,有两种搜索方式:

  1. 使用QueryParser(或MultiFieldQueryParser)解析查询字符串的方式
  2. 自己直接创建Query子类的实例方式

由于可以使用Query对象的toString()方法打印出对应的查询语法,所以以第二种方式做的话,可以看相应的第一种查询方法:

/*   1.匹配所有对应的查询字符串为:      *:*
     Query query = new MatchAllDocsQuery();
     
     2.范围查询对应的查询字符串为:     id:[5 TO 15]
     Query query = NumericRangeQuery.newIntRange("id", 5, 15, true, true);
       范围查询对应的查询字符串为:     id:{5 TO 15}
     Query query = NumericRangeQuery.newIntRange("id", 5, 15, false,false);
       范围查询对应的查询字符串为:     id:{5 TO 15]
     Query query = NumericRangeQuery.newIntRange("id", 5, 15, false, true);
     
     3.关键词对应的查询字符串为:       title:lucene
     Query query = new TermQuery(new Term("title", "lucene"));
     
     4.通配符对应的查询字符串为:      title:lucen?
     Query query = new WildcardQuery(new Term("title", "lucen?"));
       通配符对应的查询字符串为:      title:lu*ne
     Query query = new WildcardQuery(new Term("title", "lu*ne"));
     
     5.短语对应的查询字符串为:        title:"lucene ? ? 工作"
     PhraseQuery phraseQuery = new PhraseQuery();
     phraseQuery.add(new Term("title", "lucene"), 0); // 第一个词的索引是0
     phraseQuery.add(new Term("title", "工作"), 3);
       短语对应的查询字符串为:        title:"lucene 工作"~5
     phraseQuery.add(new Term("title", "lucene"));
     phraseQuery.add(new Term("title", "工作"));
     phraseQuery.setSlop(5); // 指定这些词中间的间隔最多不会超过5个词
   
     6.布尔查询
         对应的查询语法两种:
         1. + 代表MUST,-表示NOT
         2. AND、OR、NOT,注意要全是大写
         3. MUST      必须满足
             MUST_NOT   非
             SHOULD      多个SHOULD一起用,是OR的关系
         
         Query query1 = new TermQuery(new Term("title", "lucene"));
         Query query2 = NumericRangeQuery.newIntRange("id", 5, 15, false, true);
         对应的查询字符串为:          +title:lucene +id:{5 TO 15]
         对应的查询字符串为:          title:lucene AND id:{5 TO 15]
         booleanQuery.add(query1, Occur.MUST);
         booleanQuery.add(query2, Occur.MUST);      
         
         对应的查询字符串为:          +title:lucene -id:{5 TO 15]
         对应的查询字符串为:          title:lucene NOT id:{5 TO 15]
         booleanQuery.add(query1, Occur.MUST);
         booleanQuery.add(query2, Occur.MUST_NOT);
                 
         对应的查询字符串为:          title:lucene id:{5 TO 15]
         对应的查询字符串为:          title:lucene OR id:{5 TO 15]
         booleanQuery.add(query1, Occur.SHOULD);
         booleanQuery.add(query2, Occur.SHOULD);
        ----------------------------------------------------
         MUST + SHOULD,与只有一个MUST效果相同
         SHOULD + MUST_NOT,这时SHOULD就相当MUST
         MUST_NOT + MUST_NOT,没有匹配结果,也不报错。
*/

lucene 3.0.2 操作进阶的更多相关文章

  1. 关于Lucene 3.0升级到Lucene 4.x 备忘

    最近,需要对项目进行lucene版本升级.而原来项目时基于lucene 3.0的,很古老的一个版本的了.在老版本中中,我们主要用了几个lucene的东西: 1.查询lucene多目录索引. 2.构建R ...

  2. Eclipse中通过Android模拟器调用OpenGL ES2.0函数操作步骤

    原文地址: Eclipse中通过Android模拟器调用OpenGL ES2.0函数操作步骤 - 网络资源是无限的 - 博客频道 - CSDN.NET http://blog.csdn.net/fen ...

  3. Lucene 6.0下使用IK分词器

    Lucene 6.0使用IK分词器需要修改修改IKAnalyzer和IKTokenizer. 使用时先新建一个MyIKTokenizer类,一个MyIkAnalyzer类: MyIKTokenizer ...

  4. lucene 3.0.2 search 各种各样的Query类型

    http://blog.sina.com.cn/s/blog_61d2047c010195mo.html     lucene的这种各种各样的查询类型 1.TermQuery       最简单的Qu ...

  5. windows系统快捷操作の进阶篇

    上次介绍了windows系统上一些自带的常用快捷键,有些确实很方便,也满足了我们的一部分需求.但是我们追求效率的步伐怎会止步于此?这一次我将会进一步介绍windows上提升效率的方法. 一:运行 打开 ...

  6. lucene 3.0.2 + 多文件夹微博数据(时间,微博)构建索引

    package lia.meetlucene; import java.io.File; import java.io.IOException; import java.util.LinkedList ...

  7. lucene 3.0.2 中文分词

    package lia.meetlucene; import java.io.IOException; import java.io.Reader; import java.io.StringRead ...

  8. lucene 3.0.2 搜索

    1.lucene 词频 转载:http://mxdxm.iteye.com/blog/989031 lucene in action作为action系列,确实坚持了其实用性的特色.全书花了很大的篇幅来 ...

  9. lucene 3.0.2 基本操作入门

    转自:Bannings http://blog.csdn.net/zhangao0086/article/details/ 我们为什么需要Lucene? 任何的的查询功能都类似,都是对文本内容的搜索, ...

随机推荐

  1. Nutch搜索引擎(第1期)_ Nutch简介及安装

    1.Nutch简介 Nutch是一个由Java实现的,开放源代码(open-source)的web搜索引擎.主要用于收集网页数据,然后对其进行分析,建立索引,以提供相应的接口来对其网页数据进行查询的一 ...

  2. sed实例精解--例说sed完整版

    原文地址:sed实例精解--例说sed完整版 作者:xiaozhenggang 最近在学习shell,怕学了后面忘了前面的就把学习和实验的过程记录下来了.这里是关于sed的,前面有三四篇分开的,现在都 ...

  3. useradd 添加用户

    功能介绍 useradd命令用于Linux中创建的新的系统用户.useradd可用来建立用户帐号.帐号建好之后,再用passwd设定帐号的密码.而可用userdel删除帐号.使用useradd指令所建 ...

  4. Wordpress基础:文章和页面的区别

    页面: 页面是你可以单独建立一个固定页面,可以作为留言板,或者通知的单页面,发布之后是固定的网址. 页面并不能被分类.亦不能拥有标签,但是它们可以有层级关系.您可将页面附属在另一个页面之下. 对应模板 ...

  5. hdu2444 判断二分图+最大匹配

    #include<stdio.h> #include<string.h> #include<queue> using namespace std; #define ...

  6. DFS HDOJ 2181 哈密顿绕行世界问题

    题目传送门 题意:中文题面 分析:直接排完序后DFS.这样的题以后不应该再写题解的. #include <bits/stdc++.h> using namespace std; vecto ...

  7. 1019: A+B和C比大小

    1019: A+B和C比大小 时间限制: 1 Sec  内存限制: 128 MB提交: 518  解决: 300[提交][状态][讨论版] 题目描述 给定区间[-231, 231]内的3个整数A.B和 ...

  8. STM32的晶振跟HSE外部时钟设置.

    void RCC_Configuration(void){  /* RCC system reset(for debug purpose) */  RCC_DeInit(); /* Enable HS ...

  9. Struts2的标签库(四)——数据标签

    Struts2的标签库(四) --数据标签 1.action标签 该标签用于在jsp页面直接调用一个Action,通过指定executeResult参数,还可以将Action的处理结果包含到此页面中来 ...

  10. 解决:mvn archetype:create Abstract class or interface &#39;org.apache.maven.artifact.repository.ArtifactRepository&#39; cannot be instantiated

    [ERROR] Failed to execute goal org.apache.maven.plugins:maven-archetype-plugin:2 .3:create (default- ...