Matplotlib是一个基于python的2D画图库,能够用python脚本方便的画出折线图,直方图,功率谱图,散点图等常用图表,而且语法简单。

Python中通过matplotlib模块的pyplot子库来完成绘图。Matplotlib可用于创建高质量的图表和图形,也可以用于绘制和可视化结果。matplotlib是Python优秀的数据可视化第三方库,matplotlb.pyplot是绘制种类可视化图形的命令子库,相当于快捷方式 import matplotlib.pyplot as plt.

  1. 线形图:

线性图是最基本的图表类型,常用于绘制连续的数据。通过绘制线形图,可以表现出数据的一种趋势变化。

Matplotlib的plot(X,Y)用来绘制线形图,在参数中传入X和Y的坐标即可。其中,X和Y轴坐标的数据格式可以是列表、数组和Series.

例1:坐标数据格式为series

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

data={'name':['Tom','Peter','Lucy','Max'],

'sex':['female','female','male','male'],

'math':[78,79,83,92],

'city':['北京','上海','广州','北京']

}

df=pd.DataFrame(data)

print(df)

#DataFrame数据的行索引作为X轴,math列索引作为Y轴

plt.plot(df.index,df['math'],color='red',linestyle='-',linewidth=3,marker='D')

#通过plot函数的color参数可以指定线条的颜色,

linestyle参数可以指定线条的形状,

linewidth参数可指定线条的宽度,

marker参数可对坐标点进行标记(默认情况下,坐标点是没有标记的),

#结果:

name   sex   math  city        #创建一个DataFrame数据

0    Tom  female    78   北京

1  Peter  female    79   上海

2   Lucy    male    83   广州

3    Max    male    92   北京

绘制的线性图:

注意:颜色设置要放在线条和点的样式的前面,颜色、线条和点的样式可以放置于格式字符串。

如:plt.plot(df.index,df['math'],'co-')  运行结果如下:

2. 柱状图

2.1  绘制柱状图主要是使用matplotlib的bar函数:

bar函数的color参数可以设置柱状图的填充颜色,

alpha参数可以设置透明度,

例如:import matplotlib.pyplot as plt

data=[23,85,72,43,52]

plt.bar([1,2,3,4,5],data,color='royalblue',alpha=0.7)   #运行结果:

bottom参数用于设置柱状图的高度,以此绘制堆积柱状图;

width参数 用于设置柱状图的宽度,以此可以绘制并列柱状图

grid函数用于绘制格网,通过对参数的个性化设置,可以绘制出个性的格网

例如:

import numpy as np

import matplotlib.pyplot as plt

data1=[23,85,72,43,52]

data2=[42,35,21,16,9]

width=0.3

plt.bar(np.arange(len(data1)),data1,color='royalblue',alpha=0.7,width=width)

plt.bar(np.arange(len(data2))+width,data2,color='green',alpha=0.7,width=width)

plt.grid(color='black',linstyle='--',linewidth=3,axis='y',alpha=0.6)

#运行结果:

Bar函数的通过barh函数可以绘制水平柱状图

import numpy as np

import matplotlib.pyplot as plt

data1=[23,85,72,43,52]

plt.barh(np.arange(len(data1)),data1,color='green',alpha=0.5)   #如图所示:

                                                                

2.2 刻度与标签:

现实中的柱状图的X轴是有刻度标签的,上述实例中未设置。在matplotlib中,

通过xticks函数 设置图标的X轴的刻度和刻度标签,yticks函数设置y轴的刻度和标签。

通过xlabel 和 ylabel 方法给X轴和Y轴添加标签,

通过title方法为图表添加标题

例如:

import numpy as np

import matplotlib.pyplot as plt

data1=[23,85,72,43,52]

labels=['A','B','C','D','E']

plt.xticks(range(len(data1)),labels)                #设置刻度和标签

plt.xlabel('Class')      #plt.xlabel、ylabel、title方法分别给X轴和Y轴,图标题添加标签。

plt.ylabel('Amounts')

plt.title('Example')

#plt.bar(range(len(data1)),data)

plt.bar(np.arange(len(data1)),data1,color='royalblue',alpha=0.7)

plt.grid(color='black',linstyle='--',linewidth=3,axis='y',alpha=0.6)

#运行结果:

2.3 图例:               

图例是标识图表元素的重要工具,在bar函数中传入label参数表示图例名称,通过legend函数即可绘制出图例。

data1=[23,85,72,43,52]

data2=[42,35,21,16,9]

width=0.3

plt.bar(np.arange(len(data1)),data1,width=width,label='one')

plt.bar(np.arange(len(data2))+width,data2,width=width,label='two')

plt.legend()    #结果图:

2.4 文本注解:

例如:在柱状图中加入文本数字,可以很清楚的知道每个类别的数量。通过text函数可以在指定的坐标(x,y)上加入文本注释

data=[23,85,72,43,52]

labels=['A','B','C','D','E']

plt.xticks(range(len(data)),labels)         #设置刻度和标签

plt.xlabel('Class')

plt.ylabel('Amounts')

plt.title('Example')

plt.bar(range(len(data)),data)

for x,y in zip(range(len(data)),data):

plt.text(x,y,y,ha='center',va='bottom')         #文本注解  # 第一个参数是x轴坐标

# 第二个参数是y轴坐标

# 第三个参数是要显式的内容

3.散点图:

 Matpltlib中 scatter函数可以用来绘制散点图,传入X和Y轴坐标。Scatter(X,Y)

利用Numpy创建一组随机数

import numpy as np

import matplotlib.pyplot as plt

X=np.random.randn(100)

Y=np.random.randn(100)

plt.scatter(X,Y,color='red',marker='D')

#散点图:

 4. 直方图

matplotlib的hist()函数用来绘制直方图。

直方图与条形图的区别:

直方图是用面积表示各频数的多少,矩形的高度表示每一组的频数或频率,宽度则表示各组的组距,因此其宽度与高度均有意义;

条形图(柱状图)是用条形的长度表示各类频数的多少,其宽度是固定的。

由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图是分开排列;条形图主要是用于展示分类数据,而直方图则主要用于展示数据型数据。

x=np.random.normal(size=100)

plt.hist(x,bins=30)

5. 自定义设置

Matplotlib的图像位于Figure对象中,实际上就是创建了一个空的图像窗口。可通过figure函数可以创建一个新的Figure,用于绘制图表

fig=plt.figure(figsize=(10,6))     #figsize参数可以设置图表(整个图)的长宽比

ax1=fig.add_subplot(2,2,1)     #不能通过空figure绘图,必须用add_subplot()创建一个或者多个子subplot绘图区才能绘图   

#意思是:绘制2*2两行两列共4个子subplot图像

ax2=fig.add_subplot(2,2,2)    #在创建Figure对象过程中,通过add_subplot函数创建子图,用于绘制图形

ax3=fig.add_subplot(2,2,3)

years=[1950,1960,1970,1980,1990,2000,2010]

gdp=[300.2,543.3,1075.9,2862.5,5979.6,10289.7,14958.3]

ax1.scatter(years,gdp)     #选用不同的ax变量,则可以在对应的subplot子图中绘图(散点图、线形图、柱状图)

ax2.plot(years,gdp)

ax3.bar(years,gdp)

个参数:垂直绘图的数量、水平绘图的数量以及表示绘图位置的索引(基于行进行计算)

fig,axes=plt.subplots(2,2,figsize=(10,6))

axes[1,0].plot(years,gdp)

axes[0,0].scatter(years,gdp)

axes[0,1].bar(years,gdp)

axes[1,1].hist(years,gdp)

注意:当没有设置figsize时,创建多子图会显得拥挤。通过plt..subplot_adjust方法可以设置子图的间距修改子图之间的间距(增加额外的空间以调整两个子图之间的距离)

subplots__adjust(left=None,bottom=None,right=None,top=None,wspace=None,hspace=None) ,其中前4个参数用于设置subplot子图的外围边距,wspace和hapace参数设置用于设置subplot子图间的边距。

fig,axes=plt.subplots(2,2)    #未设置figsize时,默认情况下,各sudplot子图间都会留有一定的间距。

years=[1950,1960,1970,1980,1990,2000,2010]

gdp=[300.2,543.3,1075.9,2862.5,5979.6,10289.7,14958.3]

fig,axes=plt.subplots(2,2)

plt.subplots_adjust(wspace=0.3,hspace=0.3)

axes[1,0].plot(years,gdp)

axes[0,0].scatter(years,gdp)

axes[0,1].bar(years,gdp)

axes[1,1].hist(years,gdp)

6. 样式与字体:

Matplotlib自带了一些样式供用户使用,如常用的ggplot样式,通过plt.style.use('ggplot') 函数即可调用该样式绘图。

Matplotlib默认为英文字体,如果绘制中出现汉字就会乱码,因此需要指定matplotlib的默认字体,这样就可以解决乱码的问题,

plt.rcParams['font.sans-serif']=['simhei']         #指定默认字体

plt.rcParams['axes.unicode_minus']=False        #解决保存图像时负号‘-’显示为方块的问题

Python数据分析matplotlib可视化之绘图的更多相关文章

  1. Python数据分析与可视化(经典学习资料)

    Numpy:来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多,本身是由C语言开发.这个是很基础的扩展,其余的扩展都是以此为基础.数据结构为 ...

  2. Python数据分析-Matplotlib图标绘制

    Matplotlib介绍 Matplotlib是一个强大的Python绘图和数据可视化的工具包. Matplotlib的主要功能 Matplotlib是python中的一个包,主要用于绘制2D图形(当 ...

  3. python 数据分析----matplotlib

    Matplotlib是一个强大的Python绘图和数据可视化的工具包. 安装方法:pip install matplotlib 引用方法:import matplotlib.pyplot as plt ...

  4. python 数据分析 Matplotlib常用图表

    Matplotlib绘图一般用于数据可视化 常用的图表有: 折线图 散点图/气泡图 条形图/柱状图 饼图 直方图 箱线图 热力图 需要学习的不只是如何绘图,更要知道什么样的数据用什么图表展示效果最好 ...

  5. python数据分析之:绘图和可视化

    在数据分析领域,最出名的绘图工具就是matlib.在Python同样有类似的功能.就是matplotlib.前面几章我们都在介绍数据的生成,整理,存储.那么这一章将介绍如果图形化的呈现这些数据.来看下 ...

  6. Python调用matplotlib实现交互式数据可视化图表案例

    交互式的数据可视化图表是 New IT 新技术的一个应用方向,在过去,用户要在网页上查看数据,基本的实现方式就是在页面上显示一个表格出来,的而且确,用表格的方式来展示数据,显示的数据量会比较大,但是, ...

  7. Python 数据分析中常用的可视化工具

    Python 数据分析中常用的可视化工具 1 Matplotlib 用于创建出版质量图表的绘图工具库,目的是为 Python 构建一个 Matlab 式的绘图接口. 1.1 安装 Anaconada ...

  8. 小白学 Python 数据分析(19):Matplotlib(四)常用图表(下)

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  9. python数据分析工具 | matplotlib

    不论是数据挖掘还是数学建模,都免不了数据可视化的问题.对于 Python 来说,matplotlib 是最著名的绘图库,它主要用于二维绘图,当然也可以进行简单的三维绘图.它不但提供了一整套和 Matl ...

随机推荐

  1. vs2008/2010安装无法打开数据文件解决方案

    本人在安装VS2008或2010时,在开始的第一个页面(进度条大约加载到75%左右),提示“无法打开数据文件 'C:/Documents and Settings/Administrator/Loca ...

  2. metasploit升级(BT5)

    1.apt-get update 2.apt-get install metasploit 3.修改文件:/opt/metasploit/ruby/lib/ruby/1.9.1/i686-linux/ ...

  3. Android开发-API指南-<data>

    <data> 英文原文:http://developer.android.com/guide/topics/manifest/data-element.html 采集(更新)日期:2014 ...

  4. CrazePony飞行器--相关资料网址

    Crazepony官网:http://crazepony.github.com/ Crazepony百科:http://crazepony.github.com/wiki.html Crazepony ...

  5. 用C#实现控制台进度条

    在写一些简单的控制台测试程序时,经常希望能够在程序运行的过程中实现进度条的功能以便查看程序运行的速度或者进度.本文以C#为例,实现简单的控制台进度条,以供大家参考(本文底部附下载地址). 1.实现效果 ...

  6. OK335xS EMMC Partition hacking

    #! /bin/sh # # OK335xS EMMC Partition hacking # 说明: # 本文主要是为了解读同事对EMMC分区的写法,其中有很多写法重复了,但 # 依然尽量保留其作者 ...

  7. 快速高效的破解MySQL本地和远程密码

    http://www.kankanews.com/ICkengine/archives/212.shtml 快速的 MySQL 本地和远程密码破解!首先需要对数据库维护人员说明的是,不必紧张,你无需修 ...

  8. 玩转nodeJS系列:使用原生API实现简单灵活高效的路由功能(支持nodeJs单机集群),nodeJS本就应该这样轻快

    前言: 使用nodeJS原生API实现快速灵活路由,方便与其他库/框架进行整合: 1.原生API,简洁高效的轻度封装,加速路由解析,nodeJS本就应该这样轻快 2.不包含任何第三方库/框架,可以灵活 ...

  9. 基于Linux环境,创建PHP后台守护进程(转载)

    应用场景:某些情况下,我们需要持续的周期性的提供一些服务,比如监控内存或cpu的运行状况,这些应用与客户端是没有关系的,不是说客户端(如web界面,手机app等)关闭了,我们就不监控内存或cpu了,为 ...

  10. jQuery EasyUI一个基于 jQuery 的框架(创建网页所需的一切)

    jQuery EasyUI学习网址:http://www.runoob.com/jeasyui/jqueryeasyui-tutorial.html jQuery MiniUI学习网址:http:// ...