代码随想录算法训练营Day50 动态规划
代码随想录算法训练营
代码随想录算法训练营Day50 动态规划| 123.买卖股票的最佳时机III 188.买卖股票的最佳时机IV
123.买卖股票的最佳时机III
题目链接:123.买卖股票的最佳时机III
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1: 输入:prices = [3,3,5,0,0,3,1,4] 输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3。
总体思路
关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。
动规五部曲:
- 确定dp数组以及下标的含义
一天一共就有五个状态, - 没有操作 (其实我们也可以不设置这个状态)
- 第一次持有股票
- 第一次不持有股票
- 第二次持有股票
- 第二次不持有股票
dp[i][j]
中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]
表示第i天状态j所剩最大现金。
需要注意:dp[i][1],
表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。
例如dp[i][1]
,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么dp[i][1]
延续买入股票的这个状态。 - 确定递推公式
达到dp[i][1]
状态,有两个具体操作:
- 操作一:第i天买入股票了,那么
dp[i][1] = dp[i-1][0] - prices[i]
- 操作二:第i天没有操作,而是沿用前一天买入的状态,即:
dp[i][1] = dp[i - 1][1]
那么dp[i][1]
究竟选dp[i-1][0] - prices[i]
,还是dp[i - 1][1]
呢?
一定是选最大的,所以dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1])
;
同理dp[i][2]
也有两个操作: - 操作一:第i天卖出股票了,那么
dp[i][2] = dp[i - 1][1] + prices[i]
- 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:
dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])
同理可推出剩下状态部分:
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
- dp数组如何初始化
第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0
;
第0天做第一次买入的操作,dp[0][1] = -prices[0]
;
第0天做第一次卖出的操作,这个初始值应该是多少呢?
此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0
;
第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?
第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。
所以第二次买入操作,初始化为:dp[0][3] = -prices[0]
;
同理第二次卖出初始化`dp[0][4] = 0; - 确定遍历顺序
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。 - 举例推导dp数组
以输入[1,2,3,4,5]为例
可以看到红色框为最后两次卖出的状态。
现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。如果想不明白的录友也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4][4]
已经包含了dp[4][2]
的情况。也就是说第二次卖出手里所剩的钱一定是最多的。
所以最终最大利润是dp[4][4]
。
// 版本一
class Solution {
public:
int maxProfit(vector<int>& prices) {
if (prices.size() == 0) return 0;
vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
for (int i = 1; i < prices.size(); i++) {
dp[i][0] = dp[i - 1][0];
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}
return dp[prices.size() - 1][4];
}
};
188.买卖股票的最佳时机IV
题目链接:188.买卖股票的最佳时机IV
给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1: 输入:k = 2, prices = [2,4,1] 输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2。
总体思路
这道题目可以说是[[#123.买卖股票的最佳时机III]]的进阶版,这里要求至多有k次交易。
动规五部曲,分析如下:
- 确定dp数组以及下标的含义
在[[#123.买卖股票的最佳时机III]]中,定义了一个二维dp数组,本题其实依然可以用一个二维dp数组。
使用二维数组dp[i][j]
:第i天的状态为j,所剩下的最大现金是dp[i][j]
j的状态表示为:
- 0 表示不操作
- 1 第一次买入
- 2 第一次卖出
- 3 第二次买入
- 4 第二次卖出
- .....
大家应该发现规律了吧 ,除了0以外,偶数就是卖出,奇数就是买入。
题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。
所以二维dp数组的C++定义为:
vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
- 确定递推公式
还要强调一下:dp[i][1]
,表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。
达到dp[i][1]
状态,有两个具体操作:
- 操作一:第i天买入股票了,那么
dp[i][1] = dp[i - 1][0] - prices[i]
- 操作二:第i天没有操作,而是沿用前一天买入的状态,即:
dp[i][1] = dp[i - 1][1]`` 选最大的,所以
dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);同理
dp[i][2]`也有两个操作: - 操作一:第i天卖出股票了,那么
dp[i][2] = dp[i - 1][1] + prices[i]
- 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:
dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])
同理可以类比剩下的状态,代码如下:
for (int j = 0; j < 2 * k - 1; j += 2) {
dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}
和[[#123.买卖股票的最佳时机III]]最大的区别就是这里要类比j为奇数是买,偶数是卖的状态。
3. dp数组如何初始化
第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;
第0天做第一次买入的操作,dp[0][1] = -prices[0];
第0天做第一次卖出的操作,这个初始值应该是多少呢?
此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;
第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?
第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。
所以第二次买入操作,初始化为:dp[0][3] = -prices[0];
第二次卖出初始化dp[0][4] = 0;
所以同理可以推出dp[0][j]当j为奇数的时候都初始化为 -prices[0]
代码如下:
for (int j = 1; j < 2 * k; j += 2) {
dp[0][j] = -prices[0];
}
在初始化的地方同样要类比j为偶数是卖、奇数是买的状态。
4. 确定遍历顺序
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。
5. 举例推导dp数组
以输入[1,2,3,4,5],k=2为例。
最后一次卖出,一定是利润最大的,dp[prices.size() - 1][2 * k]即红色部分就是最后求解。
class Solution {
public:
int maxProfit(int k, vector<int>& prices) {
if (prices.size() == 0) return 0;
vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
for (int j = 1; j < 2 * k; j += 2) {
dp[0][j] = -prices[0];
}
for (int i = 1;i < prices.size(); i++) {
for (int j = 0; j < 2 * k - 1; j += 2) {
dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}
}
return dp[prices.size() - 1][2 * k];
}
};
代码随想录算法训练营Day50 动态规划的更多相关文章
- 代码随想录算法训练营day01 | leetcode 704/27
前言 考研结束半个月了,自己也简单休整了一波,估了一下分,应该能进复试,但还是感觉不够托底.不管怎样,要把代码能力和八股捡起来了,正好看到卡哥有这个算法训练营,遂果断参加,为机试和日后求职打下一个 ...
- 代码随想录算法训练营day02 | leetcode 977/209/59
leetcode 977 分析1.0: 要求对平方后的int排序,而给定数组中元素可正可负,一开始有思维误区,觉得最小值一定在0左右徘徊,但数据可能并不包含0:遂继续思考,发现元素分布有三种情 ...
- 代码随想录算法训练营day22 | leetcode 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点
LeetCode 235. 二叉搜索树的最近公共祖先 分析1.0 二叉搜索树根节点元素值大小介于子树之间,所以只要找到第一个介于他俩之间的节点就行 class Solution { public T ...
- 代码随想录算法训练营day17 | leetcode ● 110.平衡二叉树 ● 257. 二叉树的所有路径 ● 404.左叶子之和
LeetCode 110.平衡二叉树 分析1.0 求左子树高度和右子树高度,若高度差>1,则返回false,所以我递归了两遍 class Solution { public boolean is ...
- 代码随想录算法训练营day13
基础知识 二叉树基础知识 二叉树多考察完全二叉树.满二叉树,可以分为链式存储和数组存储,父子兄弟访问方式也有所不同,遍历也分为了前中后序遍历和层次遍历 Java定义 public class Tree ...
- 代码随想录算法训练营day12 | leetcode 239. 滑动窗口最大值 347.前 K 个高频元素
基础知识 ArrayDeque deque = new ArrayDeque(); /* offerFirst(E e) 在数组前面添加元素,并返回是否添加成功 offerLast(E e) 在数组后 ...
- 代码随想录算法训练营day10 | leetcode 232.用栈实现队列 225. 用队列实现栈
基础知识 使用ArrayDeque 实现栈和队列 stack push pop peek isEmpty() size() queue offer poll peek isEmpty() size() ...
- 代码随想录算法训练营day06 | leetcode 242、349 、202、1
基础知识 哈希 常见的结构(不要忘记数组) 数组 set (集合) map(映射) 注意 哈希冲突 哈希函数 LeetCode 242 分析1.0 HashMap<Character, Inte ...
- 代码随想录算法训练营day03 | LeetCode 203/707/206
基础知识 数据结构初始化 // 链表节点定义 public class ListNode { // 结点的值 int val; // 下一个结点 ListNode next; // 节点的构造函数(无 ...
- 代码随想录算法训练营day24 | leetcode 77. 组合
基础知识 回溯法解决的问题都可以抽象为树形结构,集合的大小就构成了树的宽度,递归的深度构成的树的深度 void backtracking(参数) { if (终止条件) { 存放结果; return; ...
随机推荐
- 宕机了,Redis如何避免数据丢失?
Redis的持久化主要有两大机制,即AOF日志和RDB快照 AOF日志 1.2 AOF日志是如何实现的? 说到⽇志,我们⽐较熟悉的是数据库的写前⽇志(Write Ahead Log, WAL)-- ...
- Go语言实现TCP通信
TCP协议为传输控制协议,TCP协议有以下几个特点:1. TCP是面向连接的传输层协议:2. 每条TCP连接只能有两个端点,每条TCP连接是点到点的通信:3. TCP提供可靠的交付服务,保证传送的数据 ...
- VUE中的$set与$delete的原理
我们上文说了,Vue 是通过 Object.defineProperty 和重写数组的原型方法来达到监控数据的目的.但是,在某些情况下,上面两种方案无法做到监控数据的变化,例如: (1):当我们给对象 ...
- vue之头像管理思路
思路是在vant库中使用插件将上传的头像转码存入数据库中.每个用户存一个,不同用户就有不同的头像了.若数据库中没有头像,那么就给一个默认头像 头像上传后端接口: var express = requi ...
- Win系统下实现任意exe静态免杀
Win系统下实现任意exe静态免杀?很简单 近几天用C++写了个远控,发现生成出来的exe都会被识别,可能是有人和我写的代码差不多,细想了一下,可能只有静态过不了,动态应该是可以过的,毕竟不可能巧到流 ...
- 二进制安装Kubernetes(k8s) v1.23.4
1.环境 网段 物理主机:192.168.1.0/24 service:10.96.0.0/12 pod:172.16.0.0/12 如果有条件建议k8s集群与etcd集群分开安装 1.1.k8s基础 ...
- pnpm 之降本增效
作者:京东科技 于振京 受众简介 前端研发工程师 还在为npm i安装大量依赖等待时间较长,npm扁平化node_modules依赖版本冲突在苦恼吗,不用苦恼pnpm为你保驾护航 主要影响:安装依赖包 ...
- SSL CA 证书生成shell
gencert ssl证书生成 要保证Web浏览器到服务器的安全连接,HTTPS几乎是唯一选择.HTTPS其实就是HTTP over SSL,也就是让HTTP连接建立在SSL安全连接之上. SSL使用 ...
- YII文件上传
<span style="font-size:14px;">use yii\web\UploadedFile; public function actionDoarta ...
- 狠狠地切割(Hard Version)
狠狠地切割(Hard Version) (https://www.luogu.com.cn/problem/P8889) 跟easy版非常像,但是数据太大开标记数组的话会爆所.以得转换一下 开一个ma ...