奖券数目:枚举

有些人很迷信数字,比如带“4”的数字,认为和“死”谐音,就觉得不吉利。
虽然这些说法纯属无稽之谈,但有时还要迎合大众的需求。某抽奖活动的奖券号码是5位数(10000-99999),要求其中不要出现带“4”的号码,

主办单位请你计算一下,如果任何两张奖券不重号,最多可发出奖券多少张。

请提交该数字(一个整数),不要写任何多余的内容或说明性文字。

题目描述:答案52488

#include<iostream>
#include<algorithm>
#include<math.h> using namespace std;
int main()
{
int ans=0;
for(int i=10000;i<100000;i++){
int t,j=i;
while(j>0){
t=j%10;
if(t==4){
ans++;
break;
}
j/=10;
}
}
cout<<90000-ans<<endl; //注意10000~99999 一共是90000个数 return 0;
}

星系炸弹:Excel

在X星系的广袤空间中漂浮着许多X星人造“炸弹”,用来作为宇宙中的路标。
每个炸弹都可以设定多少天之后爆炸。
比如:阿尔法炸弹2015年1月1日放置,定时为15天,则它在2015年1月16日爆炸。
有一个贝塔炸弹,2014年11月9日放置,定时为1000天,请你计算它爆炸的准确日期。

请填写该日期,格式为 yyyy-mm-dd  即4位年份2位月份2位日期。比如:2015-02-19
请严格按照格式书写。不能出现其它文字或符号。

题目描述:答案2017-08-05

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA7cAAAIqCAYAAAD/670qAAAgAElEQVR4nOy9/V8VV57vm79g7uvemT73J4HtzNwz95y5p8/0mXmdM6cDPgFO291pJh27O0MSegSULSJYm8QYnwmiaIxGEw1qtBu7nSTgA6CIolEEnxDRjSioyBZEnp8qJp3enY7f+0PtVVTVXvW462lvvvV6vV9KVe2qVWutWrU+6/td3/XCbf8daLp8BU6eqgWPLxVmFs5HEARBEARBECqeFSkQt3gWzMhK1ES8dzZ4VqQ4nm4hCfnJELdE4zNkJ0H80jkwE/vJCBIxHiYV4pfOob5rcTn62wrp9V5ovXUbLly8BMeOV6G4RRAEQRAEQRSJ987mOpKZLyrjUmFL4AVupoZnyU6ChLx5jqcZQaIaXyrE586ltB+JELd4Fnjykw1cbw7MyE7ir/XCjZZWOHf+C6ioPIriFkEQBEEQBJElYXmyNmGbmQjx3jmuFbYzC+fDTN988OQnQ1yOFoGbCHHZSe5+HgRxOQl58yBucVLY+xa3OAkSlusUtuR62eLrvXC9uQXOnD0Hn372OYpbBEEQBEEQhI5vvkZLp4rF1jcfPAUp4MlPdo4VKTDTx6VFuwWXey7HywFBopCE5fO46QxSYZudBAl5c3W7/ctd74WrV69DbW0d/O73R1DcIgiCIAiCIFQS8uZpcuGNW6LsXuhZkQJxS2ZBXHaSYyQsmwszmVC/15cqsACpu1on6HWdRJBpjqdAZgApKxHic+eAh9GnQZWuh+IWQRAEQRAEUcTDpGoSf3GLQ3NTFfqUXEAqDULSQuJz54o61B4mNHdP1eU6EeJzZmNwKQTRiGdFCsTnUObpG5yTL3u9kGcFilsEQRAEQRBEHl8qJCybq0E0arPC8NGWXSRuSbrivbM1WW89BWi9RRA1RJGMKYNEngKdc9h9CtfzctdDcYsgCIIgCILIolWMxuXM0iT63CpuZ/q4gFnqaeNEPFpvEUSZhGVzwwI+zcgUTF3w6btefO7cUGRk+euhuEUQBEEQBEHo+LjALaruulmJqu7IBNeK20LinkxbqkQi5Bcn6Z4niCDTCS7gk0xkZI1tRdj1aMJ2cRIkLJ+6HopbBEEQBEEQhArvVqgSSErP3Dk3i9uZhaHlgTRYb7kOtfNlhCBuwyMTgZwEc9MdQCo/mS6UpcHhClHcIgiCIAiCIDJoCv6UlSiynJhyTSfFrQ5Bj67JCCLGsyIF4nJmh78/JDKy3gBSBSm6Ii07Km5rb16EiYkJQ5y+2eB44SEIgqji4xp6z4oUrgHGUX4EsRQPk8q/cyg8IiQ0B1XVRTdHX8TTKXGbaALmi1viiq0aHTo7SXdHHUFiGiaVC8omF/BJr7Al1wt71xMhfildKDsqbolQtet3enjryHsiMb21+oDzFcYg/1z0b/CzD/J4/mnDLx1PE4LEPD5uHbaEZXMhfukciPfOhvilcyAhby4XHRA73QhiHj5udD8hb97U++adw7m/5Sfj+2Y4X0PzT9XccyVugWqQea3xS+cYxzs7IuuvorgtFCw3onKdhOX6g+IgSEzi4wJI0YRt3BJtwebE1yPtD+V6ObNkIy2juKWw9FBRzAhbglTg/mDdK46nCUFiFl8qN+pPc6PJTIS4nNm6XPgQ91B5/QwEg8Gw/U2dN6n7ERvwpULC8mTZdQ/jlswyNMcLCa1tqyLw4rKTIMFA1NOZvlTDeBilNtYccTu1/JGKa/JSZ6MmR7I5Xb+QyMvT6fTykMBzFG+HuMXiNmL8KxZ+tadQ5Xqp8MsPVsDYs0nK9ZQjLaO4lfDLD30wPDoSU8KWIBS4L32wDP6/Nf/qeJoQJOYgwlbFnU0a3Q/RTmCoD4LBoGYCQ31h12jruQ9tPff5v4cnx2DbqYOK932jbBX1+kTY0hieHHM8v+wqE1o+W45PY/AfStARRB3PihT1tmzJLHtdc32pkJCfDHE5xoWtJnFbyNUtVZfsJbMcHTgxKnBcJYwQQ+XipjL05CdT24q47PDIyK/uKVQWuL5U+OUuTtgu3LpM9XpSUNwKSN2aBU8Gn2qe93ut8xbsP/85/GjbEscr1X9d9TN4cdPrkPpetshCq8RPduTCf3nnp46nHUFiBp8wQqDAcpSdBHGLZ4WFsI9bMgsS8uaBJz8ZiZA39qyEYDAI22o+0XS+8NzKa3UQGHyi+pvhiTFo7Gjhf09+Exh8ApXX6kT7g8Gg7HUaO1o03U8rjR0tVGFN0mQHgcEnpj6TVhKWzwu3LGYlQtzipPD3jUTptCItBbE5x9eTn6zJcmmbuPPN54RtBBZbXeJ2RYqkPaeQlejovFu03MYW0ShupwI+hb8bcu+ZrMD1zYdf7WaownZGVmgKhEo7i+JWQOPdG4YDXH1yvgL+88of216h/rrwXyBx0+uaBa2UlG3ZtqcZQWIVT1gghcTQKCM3z5a+mHli6HwkEtK3MxAMBqG0skz13M8bayEw0Mv/PTwxqmj5HZ4YBX93B1xqb4YZmYlQWlmm2Wrs7+4IS2MwGBTdP1IutTfD8MSoo/kfGOg19ZlUyUqUvDfizo+nIBkS8uaFLLqC49TfRp6WuOwkbrpB6N4xETzOlwoJefNAWSRqX9s28vTQBg8tFrdMKsTnzlHNA0++c/Nu5QTOr1SsY24RRojxcnFDGXpWpMgHfPLOVnzHaAL3Vx/66MI2M1HzFIAXvvef/m/4y7/6Hvyf/9dfTntxq9dyK+XE9XO60i/FSJrnbFlkWNhqtdzK/d7MOhBpPiCIG/AUSF34QqOMgnPowRaQSEnfvkIgbpXPHZ4YDQnVF+FSe3NIlL0IgYFefj8N4bl6jpHjnAB9USAEzXl24bWdwuxnMkao8yN837REvDU5DXGLk7jlKfKTo3ueL6MhmFRWorH5tnoxWdjOyNQmbjULfAenmNAEDhENACArcN0gjBBt5WnGuVbgYRQCPmmcriAUuL/6qDAkbPPCr5czS/M7hpZbCdI5t5ur9lHP+4e1P4eFuwqg5sYXImGWc3CjrmeI5Fn+Ye0rIrE5d8si+G+r0+D/eWsB9fz/9a7xObdWCFsEiTU8BSmSYAqhjp/gnITl9HkpSGRoFbfE6nqpvZn/f/r2FTAjU13cpm9fAf7uDv481bm+MmLPTnHr7+4IyxeSV9I0KKVdaq2WHneFuM0KH0zyFCQLlpyxMz0CkVsQndGap9Z6Vc5zuYilpqHbFVlomZc/T5O4LdTimq3NVdIqpAKHiIVX9xQCAIj+VvpdNDAd3K6jRtySgR/KYH3c4iRd7QJXRydhXE7YLtY3rx/FLQVptGQ5gUs4dOEYf+6Ftmu2PUfy1ixebCaWZCieKxS2RqMlo7BFEGXEazdyjbLIjcYX6iyi5dZ0tIrb4YlR3nLr7+6AzxtP8ccCA71UkVpaWcaLWnKu1FKr9rcQuy23/u4O0XHp/YWCX7iP5M3njadEgwC0a7hC3GYmQnzObMH75gZPiUR+rm+0BbPSshRO3GLr13n16BS2cdncoILaIKJmcVugFlQqEeJz5zhWvlKBc7qtkRey5Nirewqhrq1J8XeIO4gKcUsiI9Pei6xE3ctjEXE79mwSXinNDW8/8/UtIfTC9//7D6D88O8dFbdGsTJtRUf3aBa4/2PdQv68wZEh2/LvpQ+W8YJTzlo7szBc2P7Pja/aWs5664DTaUIQo/Dzs4QNfhYncBOWJ1OErWC+HhIRr70fmnN7dJ/sOY3tN0Ii9Qk0tt8IOy63n1y/oqkWgsEgfy11y+0T6rUCA09kjxlBLi3Cc4YnRqGx/QZ/rvSYv7tD9vrDE6NQ0VQr2ld6dB8Eg0F47X3GkmfSg3RObbx3NiQsT6YIW2vetxnZSfT5v1LRZWSdRyfbMw3BlKyOlOwpSFGPhC1MT3YoxgGToroGrmZxu0LtWqFBTJeIWzOOIc4RDeLWk58s804QLwbt1yLCduG2PFi4dZlY4FK8cbTwwhtvZMBf/tX3YNfuj1DcGuR/F6XzaXoy+NS2+wrF7X9e+RPH88GMeuB0WhAkUqaCK6h3xOK9sx2NshlLkGV6lJbzCQz1wRtlqyAw1AdNnTepx2n7aTR13hQtfaP2t/Q+WpbNGZ4cE4nVN8pWyaZFbcmhbacO8tcR5hHJt8rrZxTzVQ5yLaeWAtLkOstbGa0Tl56CFM5aqOYCTQJeRYEVV5O4zbFuGRxO2GqfwsEJ23maf2ueuLU5YrQEFLexhdvFrbxHBzewqOdavLB9bzl/HV7gbl0WFkNBKy9cvXodvEtzHQ0opUXYuFncfnK+wpBbcqSI3JI3ve54PkRaF5xOA4KYgk84z0/F4mH1XLVphBZxS4hE3JJ72CFutaJF3ApFqlAkq+Wb1nx1bJ3bwpD4yFERYdlJtgQ+8qwIRUVXev+zEiEuZ7brrbiaLbcWiLqppUW0uZQTi63o92aKW5V8UIsKayUobmMLN4vbqcFESgAp4ZQQDfDCdvvysOst3JoHY88m4VcfyayDqwI/5/anP/2Za8QtTby6Tdz+t9X/Cgt3FcCJ6+dEaSo8ss22NPzjhl+K3I3nhAJK/e1bP3I0bxBk2uNTsuByLmyegpToXyrERZglbmnWSXIusX7OLOQEpapbsovE7fDkGDR13qSeK3xGGmrHrXgmvVCnBJD3jQhJu943Xyr3/ufOkQSYk3QGs5MMudzZlqcOidup++oQtpKATmi5jewY4hyuFbcmREYm8ML2/XwZoTwLfvWhT3EpKyVcEVAqGsUtLT2nbzbYKiz/+s35MK8007JlehAEiRBfKre+bd48SFg2FxLy5nEfgCiMnOp27LDctvXc59G6zi0Rw9L72Clu23rui44PT45BW899/u/K62fCXJO3nTrI/02EvPS48BmcFrczC+fzojJheeh9E64561R68pMhLoe2BiTXiZuRpb4WpFNoErcmB5TyMKkRC9uZhSaL27Al3ugDlk7OuTW6OV3HkMjL05Z0+VIhIY8WnI+LCq834NP4V5OwcEc+/XqC2AQk0rfe9KK4NSntn10+Bf/v2/bPe/2bN/8FZm/5NYpbBHEzvtQpTL6uhwmHu5cLnttG7BC30usTa6j0vKbOmyLxSLuP2eKWJqrbeu7z1mihKzKxQAvTKJyTS7M6EwEsd9wV4pZg1ftmKC0hL47cufICKSvUobNjvVgdeBj1+AFx2eaJWzMstvy1TBW3WqIlR180bATRRCgyMjWeQJb+AFJkCSFaexi3OCm0ZnRkaXZU3EpdevVw4vo5Rwt7YmIC2h51QHnDCfjZjmWOV76/f+dnkFiSAT/anoPiFkFiFA+TCgn5XBTY+KVzIN47G+K9syEuZzbE5cyCuJzZEJ/D7YvPncNZr/JDlisXdZojQa/VVCj0yDWMiNvK62eo1tG2nvvQ1HkzTPzJBWhCpiceJpXrICpYcbl1cd0TbMrOdW4NzbFVWF7JTHGb4PJ1bhHESjwFyaGYBuHCNj53ju56n7CcvrQXHxDOhPfIUXGLIAiCqBBybYxfOgfilsyCuMWh5UeyEqfIFCDYH5edxJ2fM4tfjgitCwjiEKFpCvS5wYIOo3e2O+bk+1K55ZRUxG2kgbqMWmyVhKlp4jZkZVJOU2LI2oRtKxJb8LFDpO1VaIlDvQNx3DQNGWFr4gARilsEQRA34uOstPHe0PIivIhV7/xJO178+p6Lk0JrgGJHDEGcwsPIu+WRjmPcklmmWTEME3JHVBV2EXRKuUjXctZsY8J2ZqF54la79drdka+REMIpCzGMh+HiDxiGCQ3ELaUH6YtbMovzCtNzvfxkbgkhilCOy5mt73pCCsJBcYsgCOImhJbaxbNU5noZISRyl84JzfHDdh9BbIcMXikIO95N2cG1sNXnmxpfBsdTkKL4/EaFLbm2KeK2QENQLRPnHSMW1OHQlID43NBUnpzYZ2qqUgQsket/hLzCljh8vdA1aaC4RRAEcQmcRWeuwkfARIh1aJmznWcEmc4QN2XOikt557ND3hYODURpWQZH95rdvtBze60RtiRfzRC3Cfnq4t6qtX6RCCEDSEsj9X5Cog0UtwiCIC6ArItJjUioSqLBDzc3Yhq/dA4KXARxCN5NWW7eqYMDUR4mVTVi8ozsJF1THXiLrcYBPL3CltwjUnHr4df1VE5ffC4Gk3IdvlAANzsGihHXgeIWQRDEYeTntkgRBIoKBYnioyKHiM+dw41U58zWPlpNgtigwEUQx/DkJwuCt4S/s/xAlJ3BpvigUupL4WhyF15hrcWWv48Z4laDS/KMzETXLeE07SHCVqX8ESuxa0AhkQqKWwRBEAfxrNAibImgDS3xkzePC5xA65j55vPBIMg8o7ic2fJuj4J7oMBFEGdR9eDISoT4nNlc5HM7+mw+TnRrcs1Vc032ccuAzJALpCW9pkFhO7PQBHFLgmmpPXd2Eroku4lQfZUdlCArCEwLZmlnyazQeynjOZJt4HpyA+uh4Ja6rqdwH5xziyAI4iI0CVsSSXDZXC4ip952OrT8SMKyuVygCcWOJQpcBHEa3k05RyEAi41uylNL9SiI0axETdGd+TZPReBGImxnFkYubvl0qlig4pfqX+cTsbau0j0Dpt6ZhLx5kLB8GpCfrB3ZaRFTkdt1XW/ZXPqAeshLTPf1ZPDkJ4OnIET+FChuEQRBnMAXms8l28kLzYfNNckNkQRxyZ3LRWGW7bRx69e5Zj1c3hIt+KAVJKO1BIltfFyk4vilcsGmQu2Dd471brG+VE1CLy5HW2ApD6O+1m8kwnZmoSAQlnA9cMna4AnL5tLbuZDVVtWtNSvkkux0XUFC9Sr0TaUsXROfM9vY4PB0wBcKZElpZ+IWzwrNp9d3Pfr7zQ3U27FsFopbBEEQB1Bc5zLTwnUuhYE25DqrWYn6P2hWQFsWKRRchxf9LihLBLEKD8PNeZUPNBdqK6xcu9qnLWqwnjVvOSFC6QBncfN3Ix1cI0InfukcWeQiUGu12mKUZBfhk1s7mns/0BtJnoTlydT2JS47SX8fxMf1bWhtRdziWbYNBqG4RRAEsZkpNz/lzqqHSTUV/iPlS+U+aAoC1/EOAR8URM4dMtRpQcsJEuuQdyFHbh5b4pQbr0XvrIdJ1RBcKWTp0WpJJhZh0hHOSoT4XIfdfGVFknEhj9hQZtRvBTe3MyFvnvNpdClTQdPCB5l0e0+Q+c6UdydOZ0T1SEFxiyAIYie++QoueYm8G5CnIFnV8qCXhOUCIRhaA1DJRdnJzltCWFAQYTREcecFR+WR6QCJqi4bHI5EPbfC/ZIEWFKNgprIuUprfSdDApdMwXDaW8RTkMwNIqiJ+Gxsd1yBj/atCJGdhMs0KeBhUrkluWjzYpfOAQ+jr37LznPPUpgCYBEvbNu2Hdav3wg+XyGKWwRBEIvhPgB0QUmsLzMZLctv6Ccs+AnpGMhZKbISHenAeRjpHL+paNFxYetjkg+xuVZuxBlmCj0MEOq7kZA3T2FQSmCtMrsz6UtV8KSgtGNayzHkSeJ0uWt1RyYC3um6gAjWTJYJXKTL8jid8KXKBt4yElRSPujc1PfZzud74V5HJzRdvgJV1dUobhEEQSwmYRkt4IXkI6BpbUkTxG3hfNV7xefaH1xKaj3h5v7M5aw6IbdBUXpDHRkkBlg6JxQZPIWrq07P+3Yp3DsiHeixvlOpZVmgGZkvhqZWRNGUAZ9cMCK02roVfhBULnARCls6Ct/8uMVJugM+eZhUiPfOoQ+0OVQOYeIWUeavKZnIsmzM4/jLiCCxAG/5oHxUlsya+qjYKW4LlZf6cKIjJ3YzC0W6FHwgp9ypzMsbxGXw67nOCw34uOD9dRkeRhiUSWHuPBkoMOm+VEsZ7d45OCcesQiliLzCb2kM8hevfR8RQMujcHFb6LyAdDO0THRaeKK4RZDoQDbiaJYkOInN4pYsBSDn5mhJ1GalfFqeLHB/lBG3XhS304KsRIjLmQqw5vQ77Dp8GoLDZZvrpuwpSNEQcCl075zYFhqIA/jmC9ZRldQ3EtDM6TRaiNNi0m3Q8gjFrQkC12nhieIWQaID+hyXF8NHmu0Wt4WhaKgyHVa75y55ClLC3ZKXzZ3KG5mlBpAYJmTJRUugzDvDzxdVyD8Dc+lk2zKNLrwY1RwxG7lo1vz0FRek0UqcFpNug5ZHL9y91wGNTZfhRBWKWxS3KG4RxDJ882XEI7f8hUg86hK3oXVfl86B+Fwd0ZLD0pcq2znmXRttyit+LpVkXm3c4iSF9T6R2CeRj6qLVlz6O5ywXGngJxRsyowlOXypymtlh903yubgIq7Eky/jpcAvI+V8Gq3GaTHpNmh59MLdu/fgUmMTHD9RheIWxS2KWwSxCE9BCr3TSVsoXZe4FSyO7ktVQS2NyfTrZydpX7vSJKaWKRJ3kqkLzS+fh8QKy+ZynVeFeaT8WtA218mowJfKBZtSiqZM1sSNcIBgyj1Zq8DVGUUZQQR4VqRwQdRkl66ZHvVKr/j7q1//I7xVXgrND/3w1Tdfw1fffA3ND/3wVnkp/NWv/9FxcWqJuL3TfhcaLl2CY8ePo7hFcYviFkEsQs6VNm5xUrjLnk5xK3L9i6Sz70uFGTTrcpb9826JFYq6bp7AGjQl6ucjMUEqt9zN8nmcG7+SFZJYcTFybRgeJkVhPe0XxW7eEbQZCcsVlhKTKzMvupcjOiFxFigBpMx0t48G9Ai/v8tLgbbHnQAA0NjRAttO7IdtJ/ZDY0cLAAC0Pe6Ev8tLcVygmi5uq6ur4fDhw7B7924UtyhuUdwiiEXIdTTjcmaHu/zqFrcC17/8CNaL9KXKrlXniMXFlwqegmSIz+WseXHZSRxLZkF8LlkuxvmyRSwq+5DI5eZf062QfMApFEvhkPyTs+JmhdqMSKy4vlTZOZBy7RSZYkAGJv72rQWw8tPtcOX+LZj4chImvpyEK/dvwcpPt8PfvrXA+XxEnMU3X3nJH4sCljV13oRgMAhvlK1yPg8E6LHYtj3uhLFnE/Djkqyw4z8uyYKxZxNwp+c+fO/X/+S4SDVV3AYCAWhpaYG6ujoUtzaK20t3bxi696W7N/hr/PDddPj8ymnq9T2+VNljTonbYDAI204dVD2HUHn9DLWxGZ4cc7xxUWsM9dLUedPwb9t67lPT8kbZKk15LjxXK1quaRfS56y8fsZwHWnruQ9NnTfhjbJVptezsDmkSqPOAnEbGOiFGZkvQvr2FRAMBvn/k/2fN57i/y8WuNy1AkN9/LvU1nNftWxf2/UmtSMcnxu5G6PRd6qt5z54VqSIkEZ+JfVAz7M62WnZduogBINB0b7hyTHFNoKcZ6SdcOo5CZXXz0BgqE//b32p4FmRAq9/+CYEg0FI376Cr5OllWUwPDEKMzITubYw0Kk42EHy3Eh7agdK5a9WrtL9fF77UmFbzSdcPsmsrx2XncS5dRq1foXaK+0Cd0rk/uObL8ONh3fg/J2r8PrHb8Pfv/Mz+Pt3fgavf/w2nLtzFVoetcP/2viq4/UXcQ654GXcPO55EQ9wBob6DLWpWtqzbacOhvUlhN9kI2gVfW+WbwEAoApbwoLiRfD8+XN4s3yL4yI1ZsTtg4HHAAC6zn8w8Dhsf/WtC8D+4VlUiVspNKFKBLDcb6Ril1B0bA8s+22x6yy3QgEi1/FUu8YbZaugree+sU6Sg0QiuAJDfaKOrVb05BMRBlo6+8OTY64St7TnHJ4cM/TxEIpbMthgVjrpa0OSuULy4tbf3QGfN56aErfZSRAYfAKllWUwI/NF/rh4NHvKRVkqbpXqUjAYhNc/lBO3zsxpkopWLfVT7X3RU9+tpKnzpqjuytVbablJ0670rtNEtBMYEbdqg25E3HKCNxECA09geGIUPCtSqB1Wad7aMlDHcOLcU5DMsUJ+zVk9bau0XIV1QlpfSAc7PneO/BxZsq6wQc8Pbs1dfQJ35uLZ4O/ugE0Ve/igeAnL500NXvnmw5aa/dDWcx/+buVPNKXjH9b+HBo6m2Hd0d38vurW83DgYoXi7w5crFA9h1zr0VAPNHQ2wz+s/bnscX9PB/z4fS+flswDa6Cl+w7MKslw7B2MRhKWz6PW2TharAoXoGVQ1ahQJmgVfc0P/dDY0aJ6XmNHCzQ/9OsWlQAAJUf3ivZVXj0Nk19/qfka9/q6oG90ILbELRGsWoUpAMDOM+W8oO2fGJ624vbS3Rvww3fTVfcv3FUAC3cVOCpuaS+79By9YiTSkS+7MZpe0rlTO8+o1Zc0qNFqua28foYqUsh+I3VV2Cls6rxpWj2TFbc00SgQt8RKS8Rt6bF90Pa4k19WaHhiNLxcB3rBH+ikWqXcKm61WNWU6qKwHmw7dVBxwMNpcUsTXtI0Kg1KCNNO6jqNps6brhe3cumXlg1fZnvf5qyEi5MgffuKkOVW4mqbM5uPCCw3OEizqJgJP2946RzOpX7xLO7fHIFLveQ3SuK2ree+yKosJ25pdZs8q4cJuRDnzJJdbztuSchN2YAV18OELLiywazEFH26C45dqZO4SScJor/PhYS8eXC8uR6Kj+8FT4HYe8NTkBI2d/fAxQrw93SIRKQWcTurJAP8PR1Q3XoeZhbOh8wDa6DjaRc8GuoRIRTNMwvnw7qju0XHpfepbj0P647uhp+8vxRO+y9Bx9MuyDywxvH3MRqQDYxmUkA0KVq/QXr6BE5aboPf/gm2ndivet62E/vhj98GLRW3lztvgpHtXl+Xe8Vt/8SwoYci4lUqZsk1q29dmJbilpYmImCX/bY47Do/fDcdio7tcY3lVo+QkruW2VY1s9HjXiZt9MwY7QsM9elyr4tGyy1Js5xYo+WBEbc/IgojTS99jVtly+2l9mbZNA1PjkHF5dMCl2SJi3JoLmJg8Ik+t+TdzopbPb+RE7fkWUm5STsTTotbIUKrq15xS4ShtPMkbB+dFrdK4ps8g7QdI8eMugsOT4xC3OJZEJ87BwJDTzS7dJsldkUijzJPkAhwqaagN2sAACAASURBVDAjbavWNokmbokbv/Td4p/Nl8rNY186R3ZpMj7ok5G5jGSer4ZlgvzdHfCTd7NkXZZnhObY/7RkCdx+dA/icmZBXM5sAdyAAbm3nCCVgwhZwqySDGjpvgOZB9YYsrTSRDQRt+TvAxcrZK2+iOAdWpGiuORP2DfTBLS0lWqGmEgHabVghbj96puvHbHcmgEtj2y33LJ/eMZbX6XsPFMu66bM/uEZNHffEVlxlTYifGNR3LIs53pMBCtxQ/7o7BFY9tti2XRHMgfXjIZD6QU2YrlVEjZOo+V5aA2psENLG/ETXlfNEiK07Ki5vLips6+nPqmJTr3ClMx9tiK98V5jc25JJ9Df3QHBIGe5Ja5Yw5Nj/JzDGZkvwqX2ZvB3d4iuHxh8ApXX6mCmT5tbstvm3Gqtm+QctcEz4QCb0/VdOl9cj7gVeicI/x8Y6hO1G06LW4K0HdIiboX7wtzNfangKUiBYDAoK9JmZHH1v7GjhZ+XJ/cdimTqiAhfyDqquh5zKMK54J2SGzgk5avFckvLO1od8KxI4S3gssGmlswy5vrpSwVPfrJKtOsX4etv/gAJWepuzH+9ZA48+/ormFoKTMiLMLNwyh1ZKlhnFmqz3EoxU9zqvfd0x8Okyns6WRgZ2QzLrZH2Vq/BQKvoa37oh8Z7N1TP0+qW/PNtuYYMlT/flstf415fl6bfXO68GV3i9sHAY5FIlR6jzaklopf8rrn7jui8aLTcLtxVYOjexEK7cFcBL1aX/bZYJGppVtplvy2OyD3ZjIaDfJylHZy2nvu6xK2wQ+iGTptcY0Wb3yV1FTNb3JJrCjuBesStZsuIg0G9SFq1zlHRc27l9TOWBZShR0tOVIyWHBjohWAwKJpzK4QM8sTncJ3IwECvZP7tixAY6IXGuzcgMPiEOhdPVAd9qaHItOEdcbuiJRv1epCKW5pwdZu4lXoXCN9v/v9MKrQ97oTGjhZIyE+GhPxkCAaD8PqelfzfZB+h4lodv39rzScQDAZF5zpBxbU6CAw+CXsG6X7pMaXyJ8df2+kDMj9dPLgzVf8T8ubx195a8wkk5CeL8rXiWh0MT4xF/qx50ujOocjAIWujuA3grFDkt8MTY7C15pOpublMKt8maXVLls7jnlk4ZckP60AT1+mwdImtuIbdlAu45YjkBPTo5Dj8fd6PVMXt3+f9CEYnx2WPq6VDTWAK58kSMavFCnzafwkaOps1W4qFoPVWBiaV+1ZS6kvcklmcN4GLI+QL30st3zJynhXi9q3yUnj+/Dks2JQpe86PQgGl3iovtcVye6+vS9XV+F5fV/SJ251nymWFKABQrbrsH56JxK30vGgUt5FaboX7hULXKiJ94cnHlXx0Sae8rec+H5lW6jKpNPeIXEfNEuUUZolbpVFDOYuHVmhumlobbyfFrVzwHKVAQoGhPggM9SmOzJK8typYmfw6t7NU17n9vPEUBINBINGQhSIzMNQHldfOQHzObAgGxdFkiVvz8MQoxOfMhrbH4fNwwwYupHMYQ1YcMofRjndH+O7LzSGMdnFL2kSqoPWlwvDkGGytPgDxuXOhLdAJjXdv8HM3g8Egb8knxC2exSM8Rv4vPO4EjXdvQGDgCf83SVNFU61oPzn22g6f6O/SY/vCr7tkFgxPjELpsX2Qvp0Jq/9E3F5qb+aWkJJcy9/dweVrKB3EndkwS2ZxQi5LKGw56ycJKhU2yBWykMYtDj3L8X3cnFPvbGgLdELb407wFKRoFre0d4gMIFPbR998FTflkCuod46hNXGFaxZLAwOdu9UEOXvWqIrbnD1r4NytJkVxSwSqXoild1ZJBlx50CoSt1LLrRaRLD2uNVAVMp/3epBbD97Kb1AkkcqVrinXj9XT55KiVfR979f/BHd67sPolxNUgbtgUybcfNQOB89XGFoKyKi4jUnLrcfHzZeVWm+bu++I5tQK97N/eMb/ZueZ8rDzYkHcenzhkY/lxO3nV07zVljhOUXH9simOdKgUpE0GuSjLBSs0jlwUjEo1yhI3fjc0EmVa9Tsttzy4kRyb5pgk54jbGjlglORtDgtbmnIBZZS+430OaxYAojgKUihf7RpUR99YsstDfIOEEtNY0cLBAaf8Pfwd3fApfbmKWsuxUVTWgc9BcnUzmNcdpJoeSGr3x0jnQupuFXKN6fbDZLvwkE98l5VXjvDL3sTDAah9GgZX5akPKQijghY2sBEaWVZaGBEWUBYjdSqStIkXsoq/PmEvyNCVXpdUs+lVlvab4LBoCjSODn2eeMp+sBORITcKAWux56ClFCQnPDzhydGobSyjPfSIKI8PmdK6JJ2Qk+0ZGH9km2fiJvyEplgU5lTbsq6pyf4QtfPm8tZsEMi+hdb8+BhXwC+n/9j2Tz8fv6P4WFfAH65bbmiuI0UM8XtgYsVvHBed3S3yFVa+jdC6ghZkzl8gMWOyMhGvAe1XDNSgUxDjwD9u7wUaHvcCQAAjfduwLYT+2Hbif3QeO8GPH/+HP7ite/DjMUvwkubF9sibq2AlkeOiNt/378aAAD+ff9q8PiU59r2TwzDv+9fTRXEsSJu5USs0v4fvpsOC3cVQNGxPbxwlVsC6KOzRxwVtwSpuBVazMioMq3zLoQWJIjmhuU00oaS1rEw03IrF5RGep6W9KkFJHGjuJVaorW4+cjNsbNM9PhSZdzzKBGTfeKlgKY67Ynw2g4fVdgFg0HegivsnApdlYcnRqlRlIVQxe2SWdTorla9O2ZYboXnSNse0tY4JW6JxwpJC4nuPDwxChWXT8Ol9mY+CnZppbq4Jf8nFn6hSHOLuBXWQ+GazWrilhYNXFhXyTPLPaOSuBWmyTpxO0e0JrOauCUDWtLr8O7VyzlxqVXcCr+PxHtFqY1SnStLAvoYmffoE4jokMgtrSyDqx2tEEdxQ03ISoKrHa18eTkhbnfU/YaPcCwnbkmkZVrE5MwDa+Bc+2X4h7U/hwMXK6DjaResO7obXZKl9aIgORRAKry+2TElRhrvQEmMRmJ1NQO94u/lrUthmB0Ls44Os2PwF699H+YX/RoAwHJxW3n1tCarLQDoWh6IlkeOLQVUfesCAAD/r1yQKaHIbe6+w5+vtlkpdqWZGKm4FQpULeKWQObZEpfkaBO3ei23TZ03ZUWVlrUt7UT6PMLGUrhciZmWW7l7axG3wg6Qmri10nXXCFJ3PZJGNfEiJ26lVg8zn1eu08jPJSLnCsQtqTdcJ5xb+kda14WRUz0FKSKBSzrwRFBUNNVSP8xv7H1bViBIrU9WvzuRiFthnSb1Qtj2kLrvpLglEHHLz00MuW0Sq51QiAmD6HDij+FdcQnp2xkQB9tJFIhbWjAee5hyGWZEf8/ITITPG2tD4jb8+aTXmRKq4dfm8in8ekLvB2Ge8ktrCX43FZzNDATWzpAgJcJOOu+WQCy30ukIU+W7grPk5s6FbaG51ML6L5zaI9xP6r7WgUnPihSBmzLdihvvDUV7Nig6OEsu565840EbLNr9dihfpu63dO86uHLvpqKwlYpbre7J0jmvRNz++H0vnPZfgrc+fY8XpcLlfmgBo8hcXZr4FQpfXAZIpi4UpIRWE6DUs6X2rK8uF8yPIPzmaBG3ahbbSKy3WkXfP76VBo33bgAAwOTXX0LVjXPw4enD8OHpw1DVXM+LUK3itm90QLM41StUSbAqI1ZfWh6Fi1sbae6+AwBADSIlJ25jzXJLBCxtzqyauP3hu+l8mi7dvRHT4lbN0iJ1V3YTw5NjIqunmmXaLnErvL/wvmpuyW4St0oRTtWin8odJ2UktIKYFWQqYXmy7PqSotFpn2DuUQjieuoPdIjcg0mHdnhyjC8XT34yH7yGiFvSed9atT/8g+pLhdc/fEtG3CZa7hImrZtGOgXCMpO2F9KReKfdkgnEnVy47mhgoJe3ZAaDnFtyXHYSlB7bx80JDc2tfu2DQnjtg0J+WZTXPigUv6+hc0uPc+UtXkLFXkhAM2FaSfoqLp8WHRM+n/Q6gcEnomcUPnPj3Rv8vfyBTtG5NJEWDAZFwpdbg9aM550luR837zZ+6RzBvNOpd0t4X+GcW3lhybUXW0+E3uPQe0mrz7RBX63tGbcmrpKb8ovG3ZQlbc+bv9sKlVfruPzJ4eYtx2UnQe2Ni+Ddu04geukIr6clOvG6o7vDxK0wgJS/pwM+vXoqzH1YKJxp91ASt8L70e4/XSEDKTSPprgc6yIjSzHbcqulP2rUAqxF8C0oXgTPvvkKRr4ch4KDxfCXGf9D9lyjlls9WCmMaXnkiLglbskAnCsy2ZSst7Eobj86ewQ8vlT46OwRReFLO+bxpfJCllzHrXNuaS+7lvULybmk867WESWiJJLFsc1uLINB+nJFwnmBwucyY51bOXErFa3SfNP6XORaTuevNN1ycy3lOnK09TelHzdyTdPqFJNKX5Rear0VBHkhndhgkFump+JqHZ82UseEZU8Euyc/GeJzZofELSdsK67UwbaTyssdhKUrO8k2l2TyDEYtt2S/WufdabeymYXzwcOkcHOg22+ELJAreMFFOnfDE6Ow9cR+SFg2Fyqv1UFg6Al4VqToaiMInhUpjrDtJGdh3HbyE35f5TVuYIn8n5beN/a+TT3W2NEium7ltTO818Ebe9+GtsedUHntjCgNCXnzeJFGrLdCV+XPQ94MbY87TXnmqSV2lF2Wibs/+Z2RoDZEXErfEeFgF+0d0zRgR9ohBTfluOwkzrpWkGJ4Tn5yaSY8eBrg3KJXpIAnFHW6b2QA/untn4dE72xO9EuIz5ktupZRcbvu6G7eskoEqXB9WuG11Y7PLBRbbK88aBVFYj5wsQKqW8/z5wiDWin9HWt4mFSIz5V6MkwNCNn93VGy3ArR0mfS8w7rTasWiy379TPo6HsE/7XgX8KOkzm2hLd/txUAQLRPyxzcvtGBMEsrAKhGQ5YCEO7eHFWWW2KpJaJWTvDSRGysiVsiRKVBpLSIWzlB7FbLrVBUkX1qjQfp4JIoj3rup6VzaxVCtzAtViGpeFLLFyFaLahq56lFnKZZcp3IW+kzSdOk5LIutMKqiV5aWZqZ9nC3RHkXLKHInumbP0WhfAeVzL8WlltFUy0EBp/ATMpcPeICPeUqKnFJtsktTA6969zKHZfOYXeqjZhZGLJWeGfzbrZiF2TOUh9HiW5N3lOt7YvwuZ16VuFgmHDwTi3qO+35yLWUBjzknpUIZW7+enhnmgRc44I2RVi+oU473fqayEdIlnbew6bj+EJBdnjL/tS1iLs556Y8R5QfWsSrkvilPU/Csrny0ZSJlc2gm/LfvPkj+MM334S16d/88Y/wN4X/wl3TlwozmVTOvTvETCY17H5Gxa30GrTjegNKCcWv8Jok0JR0bV61v2MKUrfD6hS3/FTYCgIWoyWglJ7vBxlsVTrHCsvt//H6f4fmh34Y/XIC/ks+/VxiqVXb5O4x+fWXAABQefW0aA1b8v/LnTcBQLuLMYB4LdyoEbf9E8OyopXGg4HHAACiqMixJm6jDccbQgSJETwrUuStt6E1Jc10AfYUpEDC8mS6QPWFXJgVlgCxc/Q85vGlcoFTZNb9JB27hGVzHR1QiFlCAzmK+b94FiQsNz6XVHSv5fN4F2OexUncfFUd7paeFeI52XRxGRLLJrYd4ueZLxAj8lZco27KZlm1jM65JcwqyYCW7jvUubE0cSt0Z1abU0tbT3da4psPCfm0AFKJU5GRnU6jS/EwqYpC76XNiwEAIHf/es3iUKtbMlnGR6uVlQSQop1PBLJW12NXittYQ5qJTgtPFLcIEkX45oevdSnsIC6eFVrPz/p0yEaoJJbkXOujVE4bGG4eteJaojmzOdd0G5ZcmrYQkUaxhvKEgjZ5GBMGdnyp/ABTQn6y8TmERBDkKCzVk50ECXnWDowQrwPFaMoG3JTNFLeRWm4Ra/GQekyrO7lzHE+fa/Fxnl9KQu83XxyF0S8nFOfYGhW3boWWVyhuUdyiuEUQm/GsSAmJSiXrkYWj18RiKytsOZFtVzCPWMfDpHJBU2RECdepQ2utrWWi1Rpqs3ukpnTzdUlmeoPVgXh8oYB3Snm3hAzSYZ1GppD97mRxEbixvshDgkwqCb3uoV44fv2sLnGI4hZBcYsgiCnwC9YLIiLzZCZC3OIkawSuUNjS7p2VCDOykyAhHy2IZuBhyDIX9LyOWxyaX4Z5bT++KddhuXfBsvcwEoRzYBXaD6uFOT9IJ5cGMs1C46CN22I7ICbXF4XvTtySWTi4p5R3Bcn8+64k9ILf/gl21BxEcYviFsUtilsEQRAEQRAEcTdOi0m3QcsjFLcoblHcIgiCIAiCIIjLcVpMug1aHqG4RXGL4hZBEARBEARBXI7TYtJt0PIIxS2KWxS3CIIgCIIgCOJynBaTboOWRyhuIxS2MwtR3CIIgiAIgiAIYi1Oi0m3QcujMHH7N2/+C6ITp4WnHTidxwiCIAiCIAiCIEqEiVunRRSCIAiCIAiCIAiC6AXFLYIgCIIgCIIgCBL1oLhFEARBEARBEARBoh4UtwiCIAiCIAiCIEjUg+LWpbS1tYXtu3z5MoJEHVrqtl049cwItnFuw03vJRK9YL3BfI02MG9jHxS3LkWu44fb9NtIZzQaN7d1olHcugds45zb3PZeItEL1hvM12gD8zb2QXHrUrDjhxvZUNyaB4pb94BtnHOb295LJHrBeoP5Gm1g3sY+KG5dCnb8cCMbilvzQHHrHrCNc24z+l4yDBMxTtc7xPr3OJJ64/TzuAUUYJi3iHEcEbdnzpyBDRs2hHHmzBlHMqG8vBzGx8cVz/nNb35ja5qw44cb2aajuDWjE03rKE0ncet20YFtnHNbJO8l2WpqauDewh+IEG41NTVh90XxEnvorTfCuoD1I7J8ZVkWDh06BGlpabrZtWuXbc/ysHcIFqytgo2Hrzier3ryFoleHBG3NGFLcCITVq1aBUeOHJE9Xl1dDQzDwOjoqG1pwo4fbmSbjuLWKqabuNW6obidXpsZ4ra2phrFLYLi1sF8ZVkWxsbGYNOmTSLhWlBQoIjd4vZ39e2wcNMpWLjpFPQPjUVN3iLRi6PiVm2fXWzduhUYhoGGhoawYzdv3oTCwkLb04YdP9zIhuLWPKajuF2wtsow2MbF5uZ2cVtSUgLJycnQ2tqqq06VlJRASUlJ2P6KigpIT0/X9bv6+npDaRBes6ysDFpbWxXvHe24wS05OTkZ6uvrVc8hVFRUhB0vKytzVTnp+U5KBe727dthYmJC9vympiZbxW3uh1/wAvfsja6oylskOrFc3Mq5IMuJWydclU+ePAkMw8DKlSvh/v37/P6enh5YvXo1MAxDbQytRGvH73F5JiQXNVC6Lw1QlJwM1ENTP4bM5Ewofyzzu4YiSA47jpvd23QWt2bP65uO4lbL5mrLbUMRJCcXwVRT1gBFor9D7WBmOYQ1VQ1Fov2PyzNFnVwRio1lbG2RiNuamhrDaKlnFRUV8mUUgiZgWVYscioqKvj7GRG3DMNQ761VAAnFbVlZGSQnJzveJtj1HtuNsNzJwIgUtWu0trZCSUmJa6zHevNVKnBLS0sVBa5d3H7QBwvWVsHD3iHYePhKmGuyE9Nl3FBnEWt5obq6Gg4fPgy7d++OWNxOdJ2CsWvreFhWuwuy2nnC6050nTI1E0ZGRvhGraioCAYHB2F0dJS36G7cuBEGBwdtLRhNHb/H5ZBJ+/hnFkFRpnoHrqEoGTLDlOtjKM8UiGKqAMbNzk1N3MoPcOg7x4rN7ZZbs+b2xqq4tdKCq8tyKxpoE4pbbjCOKmzJ76TilvIeOPV+OLWZYbmtPlkra/EHMGa5JdZSOTFChAvtmFDMkrSSQWk5cUsTQiUlJXw6pII3PT0dysrKNNVvIm7J32VlZbYPktuB1vZ8ZHQcmLKLsGBtFRyo9Ztyb1r5Sc9JT0/Xle9OGDMiyVchbhS4v6tvF7UNUtfkDRs2yH5XrfKYRHEb+7xw298GX1y4CJWVRyMWt2PXN+oSt1phWbG4Hbu+0fSMePDgAaxcuRIYhoG9e/dCeXk5MAwDb775Jty5c8f2glHt+IWEbVFDuEidsmI8hvJMGWH6uBwyJdaP0AGxuAXu+slqVmDcLNtkxa1wcEOucLScY+HmdnEb65ZbrTQ1NcHExGTYNRwVt3KDd4pw7R3VQptZDg0CEStsN1HcGhC3p+pMFbdEULLslPVW6GqqZjWVCk+1uiIUMAzDiIRscnIyb7mVE7vp6ek666ay1Tla0VJvlIStGR45pK60trZqLge5a7nFym70OzkxMSESuJs2bXJU4OZ++AXsreFc+/uHxmDB2iqRa3IgEKAK3A0bNkAgEHBV3iLRwwttd9rhYsMlOHrseOTiVihArRS3oWubTUNDQ9gLdvbsWUcKRrnjRxegRQ1AEa0NUESxavDng0QcNxSFfQSmUZ/PlRtN3ArdMBuK6MJVyzlWb5F0os2A9g5NF3Grl83/cQ0WrK2Cwn0NMDI6Dk+HRmHB2ip4ueikA20cKAzAyW0NUCT1MlGw3KK4NfZekq36VB28tN48cSsVFEIrrtw8Sem5RNyWlZWJRKSaW7LQ5biiokL0WyJy9VrzysrKNFt5oxm1ejMkELa0Of0Mw8DFtj4RcvuUyk9uzq0Ry62wLkXCypUrqZiRr0rQBO7YmLFATpE8A3FJvv2gj99Hc02WClwtwtapvEWigxfutN+FhkuX4NhxFLcsyy35Q16wPXv2OFYw6i57IXc8PZBOXkPRVEfucTlkEotGyLpHd1fGzexNrnGWbmpuyVqEq9niVk/atdRtu5ATo2a5I0eruP3gWItI2A6NjvP71v7WmufRLm61tHWZUP4Yxa3V76Udc27JffRYPYkVlQgSqdhRErfESkzciEtKSkQWQCKOyN9aA0xJRbISkXTUnUaLuM3fe8FycSudL0v26RG3pNyFXgSRYrRMI/1OSgXujh07bH8GPQQCAf67qtVi61TeIu7nhbt378GlxiY4fqLKdHFrlgi16rpS+vv7YePGjfwLtnr1aujp6XGkYAxHEtVg7SBuxhzh51LdnB1ya431Ta0TCuBOcQugPe1a6rZdOGW5tcoSrYTW6+07dRsWrK2CtKKTYZ3Pl4tOwt3ufofbuPAAUuHHZaZfTDNxC2Dteym03J6rPgHt6f+bj5QcSV2Qilk5K5w02BTDMHyUW/L/+vr6sHdFSdyS3xIhStxSaYKIiB6GYcIsy9J0SecAqxGNwlZrvREK3EN1/rCyj6T9I+VFjgvdyUmkauncXLn6JRTI0jnTkWCkTCP9Tvb39/PL/qSlpcHvfvc725+BZVloqPBD6asVIq6duks918h3zom8RdzPC3fvdUBj02U4UVVtibi1CrMzYmJiAj788ENgGC5qMomSvHXrVlvXtyUod/wMWG2l1lvgOnRh/TmKWzJaca3dlDqhAO4VtwDa0q6lbtvFdHJLFgoR2vbtt98Cy06J25+sr+ZF7b9tOQ3ry69AV++QQ22ccNNquRX8ooh2ThGU8yJWPLUjlsQtgHXvpbBOna8+HiZurRioURIj5J6tra28uKWdIyduiQCVW0JIK7TrG1kCKNqErdZ6w7Ji92SpwDUKKTdhHSEDC+QcqeU2PT2dWp+EVlvh30aXgrIrX2lIhe2hQ4ccrycsy8KZQzfg4Er5FVCMiFu78xaJDl6419EJTZevQFX19Ba3R48e5V+sxsZGfn1bhmGgvLzc9oIxZw3I8Lm5U4fKoUjQG+Q7g1yEKvnoo7jZvrlZ3Kptbhe3ZllUo1HcAgAEg0FgWRY+qmqFBWurIPfDL+DpkD2DecbbODVL7tQmFa1Tf4uXSos1cau2WSlutWy0DqyWJYCU5uAScav1OsSiR5aAEYpbueVk5Fyj5cSzk+LILtwgFKTiVmhBJ4HG1Cy3Qus9oayszBaxZWa+Dg4OioStE/1XGl13nkDpqxXQdeeJ7DkobhGzmNbitqt3CN6raIbcD7+Adb+5BDvLykWuG1VVVbD1w09g7aGLkPvhF7Dt82boCAzYUjBqHT/F9RoV4Ppv4ZYQUb9O4to83Tp+bttQ3JqH05ZbO9yRhfcCANmItoQ//vGPwLIs7D5xExasrQLvrvPwZMB6gatJ3FI8SZSQepmQQbsw92P+uoLoytOojbNizq2wzkm3PXv2wO3bt/m/zbTcCtOm13JLoIlb2rWkgarUri+9jl5X5WjA7ACBRtIQqeWWuLbTrq1n+Se781WKVNhG6opsJgdXnoEzh244ng6jeYtEF9NW3Hb1DsErxaeg9LPrcLyxEz6qaoW0opNwtX1qjm1r5xN4aUMNfHCsBY43dsK2z5shreikLQJXj1WD6l7MHaFbbkMdO3l3Y2LVICK4CBoeP0ZLrkMbilvzcFrc2olWKxqAPrFhaxtH9SKhW27DA+GRdoxrB6euE/q7qEh+rm6Mb2ZYbqtOn4O0DVPRkaXHt27dyvPaa69BeXk5f0ypvtXX14uEBhEuZI6rXHAgN4pbkmZivY3U/dmN6K03wjpA22ckDZGIW2LVlbOwS92V3ZSvQgYHB4FhGFcK24YKP+zNOwnDNgyaWpG3SPQxbcXtxsNXoPSz66J9h+vvgHfXef7vwn0N8HHNLdE5u0/ctCx6qBB9LntcZy1crCq4JfOncGtJqlk80FXZuQ3FrXnIiVGz3JFR3JrcxkUgboVLYZHjZF3wZD4Ks0DcCqPIx/hmh7gFAOjq6oL169fDmTNnYHBwkN8vV9+IS6lQaBBhQfaRyMhybsm06xoRt3rdkuXcpoXPpCTOoxU3ils1Dw9yLilnNddxtYEVp/KVoEfYjo2NQXl5OezatcuW53jyaBBKX62AWxceOFpPjeYtEp1MW3GbtaMezrV0ifbd7e7nw9OzLAuvFJ+C63d7RedcudMDr2+toq63kwAAIABJREFUs7xg9M9HewzlmdIOn7y45d2aRR1HSuAWh9dJxQ3FrZk4Zbk1a26vnmfV6pYMEMXiNjQ4FxZU6nE5ZFKsspywJfvF4nY6uSabIW6P1V/j17kFoFtulyxZAq+99hosWbIE1q9fzx+T1jepeBDOkZQTpcnJ4rVI7bbcCgWwmjVWeK5TbZ+d7zGt3ljRxgnrifBeSiKUWG7JMkF67qelrO3MV5YNF7avvPIKFBQUUHn99df58+wStxXbLmmOluymOotEN9NW3L65vwEO1PpF++qaH4qEa86u83C8sVN0zpHz7cCUXbS8YCJbCogeHZlsYUKH/420MygUu9PTfc8Nm5q4dfOG4tY5YsJyS93UA0rR1urmBvTEvxNHVZ4+bVwk4lZJlEjr3NatW6llGmvzTqczbrDcxiJav5Mff/wxL1j1YJe4dSMobmOfaStuWzqeQFrRSahs6IC2rqdw9kYX/GpzLVRfvs+fc/ZGF7xSfApqrz2Atq6nUH35PqQVnYQrd6xf+9acaMm4xcKG4tY8UNzSt+gSt7hFuln1XjIMA8+fP+fvI3RFFm4oYmIHFLfO5SuCeYvQcaW4tevhL90OQO6HX8CCtVWQtaMeaq+FzwmovfYAFu88xy+TIXVltgrs+OFGNhS35uG0uLU7WrLV98A2Ljo3K8WtW+sbYg1uiJYci6AAw7xFjONacbthwwZNPHr0yPFMtALs+OFGNhS35uG0uEWwjXPD5rb3EolesN5gvkYbmLexj6vFrdq2YcMG2LlzZ0wKXOz44UY2FLfmgeLWPWAb59zmtvcSiV6w3mC+RhuYt7FP1Ivbvr6+mBS42PHDjWwobs0Dxa17wDbOuc1t7yUSvWC9wXyNNjBvY5+oF7cAAE+ePIk5gYsdP9zIhuLWPFDcugds45zb3PZeItEL1hvM12gD8zb2iQlxCxB7Aleu44cg0YaWum0XTj0zgm2c23DTe4lEL1hvMF+jDczb2CfqxS0NpzPVDPDlQ2IVrNsIy2I9cBtYHogRsN5gvkYbmLexT1SLWznB63SmmgG+fEisgnUbYVmsB24DywMxAtYbzNdoA/M29kFx61Lw5UNiFazbCMtiPXAbWB6IEbDeYL5GG5i3sQ+KW5eCL5+7wPLAvESwHsQyWB6IEbDeOJevRUVFEePU8/X0j8DHNbcga0c9LFhbBQvWVkHWjnr4uOYW9PSPOJ63SHSD4tal4MvnLrA8MC+jCYZhTAPrwfQAywMxgpZ644b2JtqIZXF79kYXvFx0khe1Uv61qAZOXn3gaN4i0c20FbdKjev58+cdLxh8+dyFleVxqM4Ph+r8jj9jLOQlwsEwjGpbqfUcp+rByoNX4KdFdRGz8uAVx8sjGjBbpKB4mR5orTdK7c/z58/hm2++cfxZ3ESsituzN7p4EVvy6Q1o7RqGL/8QhC//EITWrmHY8lkLf7z2mjUCF/sgsc+0FrdynbmSkhKora11tGDw5XMXVpXHoTo/35BbIXAP1PrDRkUP1Jp/HzfkJTJFLIhbM4QtwenyiAaMiJSamhpdf5P6ND4+rilNJSUlmupga2srJCcnayY9PV3T9VpbWzWlsaSkRLSvvr5e0+8j+a3SNcvKyqC1tVX1OZ2qN8L25/nz5/Ds2TMYab0CvQe3weRgv+7nFZattC6UlZVRy5VWZ4R5To5XVFRYnodG87WoqEi1DVfa7Ba3TwZGeYvtiSuPZNN18noAFqytgpffrYFA37AjeYtENyhuJRvDMDA5OQnFxcVw8uRJxwoGXz53YUV5CIWtXQLXaWFrVV4iYmJN3P77zovw7Z+/08TEsz/aKm6bm5thzZo1kJGRARkZGXD48GHqeTt27IAdO3Y4XjeMlgetXukVt8XFxcCyLBw6dEh0XSLo9EKEh5wYZRgmTJzU19dbLm4ZhtEkqiP5rVJ6iLgtKyuD5ORkV9QbOfbs2QMsy8L9xfPh3sIfQOeiuTB47oTo9yO3r0Pv/i0wdr9d9nmFgwLkX3KsoqIC0tPTqeK2tbWVWieSk5P5sjA60GB1vkabuN136jYsWFsFWz5rUU3b1oqbsGBtFeytueVI3iLRzbQXt0JhAQCucaEy8vKlpaWFsXz5cti3bx/09+sbDdWK3++n3jc7Ozvia5NrHT9+XLT/yJEj/DE3l4ebOFDrd4WwjYW8jAZiYc4tEaa/LD0H5273iQTswPjX8EHVHWAOXIXfX3wIX//xW9Hxw188gH/ddNZycdvd3Q0ZGRm8dai5uRkyMjLg6NGjovMaGhrA6/VCd3e343XDaHmQeiXc9Ijb58+fQyAQgKNHj6rWKyJUhPsqKipkf2dU3BoV1fX19WEWw+TkZCgpKeGvKRWt6enpfD2J5LdqEEFH/ibizsl6o4XBs8eg47Ufwr2FP4B7C38AvQe3wWiHHwKb8+Hewh/Afe+PYbi5QfZ5IxG30jwTlkGklnQr81VJ3Er7trTNbnHr3XUeFqytgvbHY6p9+cAgCwvWVsGi7WddW2cR9zLtxa3S5mTBRCJuly9fDjt37oTly5fz+6xuxLKzs/l7nTt3zpRrxpq4Xb16NXi9Xn6kerqiJy/tEGR2ij+7BKaW9k3L5gZxK7XMBr/9Myzd0yiyzH50sp1qxbVa3B4+fBgyMjJgYGCA37dmzRpRvg0MDIDX6w0TvGbQ19cHt27dgr6+PsvLg9Srmpoa3dTW1kJ/fz/U1dUp1mliadRqsSU4abklU5nI30KLn5JgNfrb9PR0Q4Kcdn8z0PttpLVvmzdvhgcPHsD4o054tGYRL3AJgS0rYHJ4kHo9M8Qt+beioiLMlVlYH7QOMNiVr9EmbolL8rd//k712/Pdd8/hpQ018NKGGsfrLBJ9mCtur2+MCXGr1MmsqqqypWAiEbf79+8HlmVhZGSEF52/+MUvYGJiwpK0dnV18fdevXq1adeNJXHb1NQEXq8XvF4vMAwDg4P0D3WkRIOAxg+L9cSyuKW5HS/7uMkRcVtWVgYZGRmK+8rKyiwRFpcvX4a8vDzwer2Ql5cHly9ftrQ8aPWqpqYGLrb18dD+brjzFJ4OjUNTU5PsgA0RdCSv1PKLWD6JSI1kzi3NiqpHJAqvWVFRITpOnkvOchrJb5XqpNtEmLSshXXkYlsfMAwDV+49hfGJSRh/1AkdbyTywrZ7Y45qXYhE3JI6R4StXH1IT0+HkpISXfOYV65cScWsfLVS3EaSdjle2lCjWdwCgKK4tTpvkejGVHE7/vBk1Ilb6ZxHAPm5aAzDQGlpKVRXV1teMGaIW5ZlYdOmTZCWlgYvv/wyjIxYs3ZYVVUVf+8jR46Ydt1YErd79uwBr9cLxcXF4PV6LalDdglop/MSUUfYhp252QML1lbBqkOXZTsV3/75O1h16DIsWFsFZ272iNo8p+oBEabBb/8cJlrfOnSNP97+yJopF1qQs9yuWbMGWHbKTdkKd+R33nmHf9+9Xi+sWrXK0vKQ1isAbeL2cf8o+P1+ePPNNzV5I2gRm1KLqlOWW6EgIiJJKLSJaKWlO5LfqqVJ62CKGQLGDHFbXFwMo+MTMHL7OtzPSoZ7C38AHen/DB3p/wz3Fv4AhhrPUK+l1Yqdnp6uarmtr6+npjXSgQKjeeu0uI0k7XIYcUvO2SW/eomVeYtEN6aKWzNx2nIrt//Zs2dQXFysKZqy3SNLUnHb1dUF6enpkJaWBtu2bbOsrHbu3Mnf+8oV85bdsELcGi2TSBrDwcFBYBgGVq9eDTdv3uRFrtnlYIeANgOr3JLNSJsb7xWJW3JH7zi8tKEGln54Ab765k+KbedX3/wJln54AV7aUAMdveN8m6d0HyvbOCJeF26ph88aH4nELft1EH57/j7srmmH/uFxmOjvgJHmvTB8qUjEyNX3Yby7ybJnIOKVBJEif58+fZovByvckVmWhYKCApG4Xbp0aUTXs0LcdnZ2QmdnJ6xatUpUn5U8fLRYbqUYFbd6rbZS6216errItZi4VdOsrcSySN4po79VmidMnldPmxGpgInULXnVqlUQCARguLmBF7Md6f8Mw9cvwvD1i5zIfSMRxh93ydaXSN2S5fLMDHErzGOz81UqbjPeO8v/nyZuhccBtLklmyVsWXYqoNTWipuK3yIAgPcquYBS+07ddiRvkegGxS1lo1l1yX69HU47R5ZogZ3S0tLg448/hrGxMcvKirg+m73sgFWWW7vdWKqrq8Hr9cKnn34KLDvlOnzv3j3T8souAW0G+GGxHjnPFK0s++gi3+ap3cuqNk7odrxwS71sdOQvnz2D0bZPw4QtT9NmYCcnLXkGlp0KFpWRkQFer5cXtocPH7bU8n3x4kVYtWoVL27feeediK5n9pzb27dvw8jICFy4cEH03SwuLoZAICB7Dy2CU2plI0KFll69lltynLiqyp1HBJERMR7Jb6XXkT6LkSWAIhEwZrTn44+7oHPRXE7Yvvo/YfjqF/wxInADm/Jk6wtN3AqPqYlb8n8jdc8qjIjbhZtq+f6qtP+6YG0VLNxUKzrf7jm3T4dG4RehNJ6+8Vi2D068jV4uOgk9/eZ7HGIfJPZxtbg1ipbrG3FLlgpgrc9i18iSnLhNS0uDffv2WVJOVs23FT6PtINhhluynW4sxJJKxKxU7JqBHQLaLPDDYj2RWm6J25jeQTwz64GW9Wtf2XwWJkLCdfTWb6iW28nRp5Y9gxzt7e2QkZEB7e3t0N3dDTt27OCXCtqxY4dpbsqjo6OwYsUK8Hq9Ycvr6MVMy63/0RD09/fzS+oRgbtr1y7V6RJGBJ/eqMdy4k8qfIXWYCJ8hBGPiXVQmF4lgUTOi+S3QmjiVppuq4lkKSDyvvXu38LPsR2o/Szs90Tg0tyTzRC3tOjcJN12zl/Wm69ScfuT9dWKg5YvbRBHM7db3F6/2wtpoaBSC9ZWwXuVN6H98RgE//RnCP7pz9D+eAzeP9bKHz97g26ttyNvkejGteLWaoy4JRsVt0YwK6DU5s2b+f3nz8vPXTCKVfNtWZaFl19+GdLS0uCTTz4R7f/4448hLS0NXnnlFdvqi9HGkGZFDQQC4PV6TR0MsENAO5GXelx3jbrxGr2HnffSm8fCNuz0jce65twKR9StbOfU6sHq315TFbe/2MJZUUbvfAbs+BD1OqP+3wE7bk28ATnWrFnDuyozDANr1qyBgYEB6O7uBq/Xa1qAqYmJCVi1ahUsX748YsFshri90uKHgeFxYFkW7t+/D6tXrwaGYeD48ePg9/thfHycel3h3FI9EOEhJ/L0WG6l4pVlxYGqhGvqSn8nFag0QUQLLBbJb5WeW3odva7KVtcbYT/r2bNnMPhFNdzPSobe/VtkrzF8/SL0fRaeN6SMiUCVup2riVtpXRKWCRG3dgfp0pqvtDm3SuJWutkpbls7n8Arxad4kf361jrZdGa8dwaa2h47mrdIdPNCdXU1HD58GHbv3o3iVtLoKjUQ0SBuWZaFW7du8fulItEMrJpvy7IsZGRk8EsbEbfqsbEx8Hq9kJaWBosWLbKtvhhtDA8dOiSaFyelqUl5PqAW7BLQTucloh0tA3RaNifFrRFGbx8WW28vb4HJ4R5b856s4zowMAANDQ2QkZEBDQ1T63PSglAZ4erVq7BlyxbIz8+H69ev21IeSuL2VtcgDI2Mw/tHWyB9Sx3825Y6OFB9FdatW6cpRoWQkpKSsLonZ10j6ZJbakdN3JLrkkBMNBFDAhLJpdVt4la6Nmuk7s9m1xthP+u7776Dr7/+2vD9pdZXoZCX5qec5VaYz8J6R8Rta2srMAxj+tSrSPNVLqCUFmELYJ+4vf2gjxe2aUUn4dLtAAyNjsOBWj/k7bnApzFvzwU4UOuHoVH6IJideYtENy8EAgFoaWmBurq6aSdu5SwksWK5ZVkWzp8/Lzt31QzIfNvs7GzTr/3222+Hrd2bl5fH71u/fr1t9cVoY8gwDHi93rA5ZsSyun379ojTZoeAdkNeItqJZXE70XMDhq/uCHdBvr6bar0da6+0zXJLLLNEzJ4+fRoyMjKgubmZP+fo0aOmRFA+cOAAfPbZZ9DTY454j8S9dPv27TA0PAIrDzbB3pNtMPlVEPzdI/D61jq4fkd+fi0NEiWY/E1b+1Z4XGixo6VXSdxKBYswcjG5FzkmtPRJBalR12Iz3JLl8oZhGJGbrt4lheyoN5F6qQiFLClXYZnrEbc067a0/lg5SGAkX6Nhnds7XU/5ebZpRSfhyh17BxuN5i0S3UxbcatEtIvbtWvXQlVVFezatYuPlrxo0SLo7zd3yQzh3NdNmzaZngdnz55VnEd86dIl2+qEkfKor6+XFbAkABRN+OrFDgHtVF5a6bobyf3svJdRt2SzcEM9EDLS/JFs8KjRm9zAnnCfnZbbHTt2wI4dO/i/rbTcuqU8CO9VtsDCTbWwfG8DXPA/AQCAj6puwYmmTs3XoC3tImdJJWJWSXAQcSLngip3fz1C0G7LrVAAa10PWM7ibVe9UbLcRtKvYhguerRw3WNSN4QBoISDANK1kWlzk4V1xa65y0byVUncEoGrtFktbu9298OvNrtL2GrNWyS6QXFLIdrdkoVkZmbCzp07obe317S0CYNISTFbQDc1NUFhYSG8/vrrvEgvLCyEs2fP2lonjJTH9u3bwev1ykZXJEv3RLJkj10C2um8RPShdYBOyzmuqwfjQzBybWe4sL2xB9jJcHe2sfZKYEf7LM/z06dPg9frFVlkBwYG+Dm3LDtl2XUqSI0l5cGy8OmFu6Jv5KtbTsPEV9/Aou1n4X6PO9fbRszBSXEby5ghbtU2q8Xt4p3n+KjH1++a1we1I2+R6MZ0cas0GqYU1IDmhiM8Vy7UvxU43eljWXz53IZby8MOAT1d8jKWiGVxO3onPJoqy7Iw2noQRtu4AGq86L26gxO3KksBRQoRrWQZICHt7e1QUlLCR0smgabchtHyaGp7TI3S+nLxKTjeqN1qi0QnTrolxzJaxW2kWPkMvz3TBq9vrYOWjieO56fevEWiG9PErdT9hyyMLZzPoiZulSb2o7idXijNIZViR3qme3lgXkYXsSxuJ0f7YeTKNsqyP9uBnRh1PO+jFaPlQQLFEF4pPgVvH2yEq+3ucEFErAXbc8zXaAPzNvYxTdyShcOF4lYa5EGLuGWYqdDrTopbp0cY8eVzF1gemJfRRMzOuZ2chFG/zJJj40OcldYF+R+N4HuJGAHrDeZrtIF5G/uY6pZMgiOQQAfSeUW0yH6k86RV3GpZiD0WwJfPXWB5YF4i7qgH452nqHNuR67vhvGH5xx/rmgF30vECFhvMF+jDczb2MdVc27dYrl1A/jyuQssD8xLBOtBLIPlgRgB6w3ma7SBeRv7mDrnVm1tNq3itqKiAsUtvnxIjIJ1G2FZrAduA8sDMQLWG8zXaAPzNvYx3XJLFlyPxHKL4hZfPiR2wbqNsCzWA7eB5YEYAesN5mu0gXkb+5gubmlWW5pFV7rUj1Dc1tfX8+KWiGUaTmeeleDLh8QqWLcRlsV64DawPBAjYL3BfI02MG9jH8sCSpHoyeRv6Tqcclbc9PR0UaAoqQWXZaeHFRdfPiRWwbqNsCzWA7eB5YEYAesN5mu0gXkb+5gmbkkkZFpAKa3illhuGYbhBS6KWwSJLbBuIyyL9cBtYHkgRtBSbxasraL+P9JzYxl8HzFvEeOYJm5LSkqgtbU1InFLXJJZluWtvihuESS2wLqNsCzWA7ehpTzcvnYy4s56Q0TqgrVVmhH+bjpiavs4MgrDx+thuLIOJvsHHX82p8FvT+xjy1JAWubcEpdm4bXIvF2ccxt9RHv63Uy05220px+fGfMkFtEqboVbTU0NqG3Sc1DcxhZouXUuXzUxMgqD+z+H/uK90F+8Fwb3HIHJwSHHny8m8hZxLbaJWyXLLU3YEtByG51Ekv4LFy7A22+/De+88w688847UFNT4/jzuInpXDeilen4zJgn0QWKW8SqeoM4lK8SYYsC18S8RVyN6eIWMQc9HY1I/nUy/XIUFhbCw4cPgWVZuHr1Kvh8PsfLQ8jOnTshLS0N0tLSoKqqypV1QwtpaWmO5N90/LBofebJyUkYHR0N2zc4OAjXrl2D+/fvhx2PVqZjPXAzdonb0tJSGB8fl71HWVmZ7GC33EA4GfDWinSwnXbd+vp62WUNpemlLVso/J3eAXkyJYsE5nS6bphRb6x0Z4+k/NxaBhG3jyOjMHSgIkzY8gL34/+YtgIXvz2xD4pbnfT09MCFCxdgcNDaeQtaXj4zNifTLwf5iPX29sK7774LDMNAT0+P42VPSE9P58Xt6tWrbb+/GQ2zU8JWa/rtmttn1320lllHRwfs2rULOjo6+H1Xr16Ft956CzIyMiAjIwN27NgBjx8/dqz87KwHeiEDT9nZ2dDV1WXKNZubm/m8b25ult0X7Wh9L2tqagxTX18PT58+hUOHDsneg4gJWkwOqwZkaeKIYRiqMJYKHZp3mVBYCcWuVqElFFZkOUSn60ek9UbLoIh0v/BvveJWa/m5tQwiah9VhC1hpPq84/XHrXUWiW5Q3Org0aNHsGHDBmAYBqqqquDRo0eW3cvIB0O6aTnuZPqVnqu3txeKiorg/PnzwDAMFBUVuULgVlVVQVpaGhQUFPAC16xOtNl5KxWwwr9J2qXH7BC90/HDovWZT548CYsWLYLCwkK4e/cu3L9/H1avXg3r16+Hzz77DLZv3w6LFi2C9evXR73A1VsPPqpqhQVrq+CV4lPQ0vEk7Ljf74fs7Gzo7++H/fv3w86dO01JJ8Mw0NDQAA0NDXybSdsX7RgVKRfb+hQhAuX58+fw7NkzOHr0KDXPiCA0an01Ai2mR0lJCZ8WqWBKT0+HsrIyxd+akW4irMjfZWVlUFFR4XgdMbPemCFuIyk/t5eB4e+kRmHbX7wXhivrHK8/bq2zSHSD4lYGv98PFy5cgGvXrgHLioUtoampybL7T3fLLRG25KN27tw5Vwjc1atX8+7IROAeOXLE1jToFbdy/0r32SVwp+OHRY9b8okTJyA3Nxe8Xi/s3LkT9u7dK6r3v//97yEjIwP27NkDExMTjj+bHfVg36nbisKWZVk4cuQI7N+/H1iWa78LCgoiTuPAwAB4vV7+b6/XC93d3WH7BgYGHM9PO8ojEnH71VdfQV1dnawFtr6+PsyqRnPxZVlOpJghboXPJRRCJOClmlhiWU4EyQ1wyLlYp6en6xLyQuHmdD0xWm8isfjX1NQoDiIZKT+3l4Gh76QOYTu47zOYHBpxvP64tc4i0Q2KWwpNTU1QWFgIDMPAzp07YWJiAmpra0XCdvPmzdDf329ZGqar5VZosZU+x7FT9bBw/afg3VUPn5z2Q9+gvXMPu7q6IC0tDdLT06G/vx+OHDnCu0DamQ4zxK0Q4THp/91UN6SY4S5s1330PvO1a9cgPz+fF7HCaRDDw8OwatUq8Hq9lk+PcEM9OFTnV10yhGU5cUsGmrq6ukx5L7u7u0XlyzAMtLS0hO3r7u52PD/tKA8j4vbkyZPw9ddfQ1NTk+I7Y9Ryq8VaqiZShC6rFRUVomNEJMlZ7Wgu1ASl+cNKlJWVabYwOo3RekN7l426JUdSfm4tAyPfyZHaBm3C9uNPVYXtypUrqThd35zKWyS6QHFLYefOnaKPcFFREfT29kJVVRUwDAOlpaWWCluWnZ6WW5qwFYpbAIDjtefhX9dVwoK1VfDqltPQ1vXUtnpBxCyZZ9vf38/Pv71y5Ypt6TDTcis9V+64U3Xj9oM+WLjpFCxYWwUvF52E63fNt9xfv9sDLxedhAVrq2DhplNw+0Gfo89MICJq8eLFcObMGdGxoqIiWLRoETx9al/9dypPDtRqF7doubW2PIyI2zsdD8Hv98Obb76pKm7NsNxKBSXtukIqKip4sUt+KwxQRQQT+VuYFqEgJ/dQsghqne8pFWhKOC1CnBa3kZSfm8tA1zdjZBRGG2/A2A2/KcJW7rnsqlNuqLNIdIPiNsTk8GMYa6+E8YfnYHh4GLZv3y76EG/cuBF6e3vhwoULlgtblp1+lls5YUvbTtSe4z+Gyz76wrY6kp2dHRYhmbgpmzW/z+y8lRO00WC5FQnbd0/C9bu9lqXp+t1eePld6wSulmeenJyEs2fPQklJCXzwwQfQ0tICN2/ehPz8fMjKyoJjx45BS0sLHDp0CH7961/D8ePHYXJyErxeLx/caMmSJbbVQ7vqAcuy8HHNLd4tubWT7pZ85coV0ZxbInSN0N7eDu3t7cCyLKxZs4afX7tmzRrZfdGOFeL2Uf84dHZ2wqpVq0TfU1ogPqfELbG8kt+Q4EE0Sx8Rs+TbWVJSwv+eZqWVs9wqWakZhhEtlagFJ0WI0+LWaPm5vQw0t4+h5X4G3vsEJvsHYfTidVOErfS57KxTbqizSHQz7cUtEbXDl4p4xtorYXDgKZSWloo+yKWlpbbNcXOL5dboiKSexkOPsAUA+OKLL/iP4Y/XVcHomHyZmDWieu7cOd4lWbifBJgyslSAHXlrJVamXyhsXyk+Bc33woWt2W7Jzfd64ZXiU2EC1y635BMnTkB2djasX78e8vLyID8/Hy5dugS3b9+GVatWQUZGBqxcuRJKSkqgrm4qEMi9e/dg3bp1iuLWaeuOGfV494mbVIGbnZ3Ne06QaMkFBQURBXo7d+4cZGRkcPWiuRm8Xi94vV5RtGTpvmjH7LmTV661wMjICFy4cEH0rhQXF0MgEAi7tlkBpaSBgJTELREwcksMqZGcnCyKlkyLpKx23YqKCqqo1/tNceqddlLcRlp+bi4Dre3j8PH6sPVraQLXiLCNVdzSh0KsY9qK2/HuJpGglTJ667cw8LQXNm/eLPowb9u2DTo7Oy1Pn5vWuTXSIdbTeOzatUuXsC0qKuI/hmkba2ByctL09EvZtGlT2FxVKUYCS1mdtzQBJ1nbAAAgAElEQVQe9Q3DL0vroVkmMI8b0k+ErZoraqQo3eOV4lOm3UftmZubmyEnJweOHz8Ovb29sHfvXsjIyACv1wuNjY3w4MEDeOedd2DZsmVw584d0W9LS0thyZIlUFxcrGi5dZOw1VoPEHeVB02k0LY//elP0N/fD8XFxXDy5Ele4O7atQv6+uheEWZZbokbqtJ1CcSFVSqOlObxCi2EhEjm3NKEFcuyulxoo7HemCFuIyk/t5eBZnF79AxVxI5euIrCNsK8RaKXaStuWZaFsc5aZYF7Yw887XkIxcXFIneq3l7r3CMJbrHcEvR2iPU0Hj09PVBUVARffPGFYlqJsO3p6eE/hkW/0zbXNZIOvXBurRJG5/hZmbdyvHXwKpy50S36+1HfsGvSTyyo00XcNjQ0wKpVq4BluYB2K1euhN///vfAMAzk5eVBbW0t3Lt3D27duiUazNm5cydkZGTA/v37oaurC3Jzc00tKyvBDoa7MEPcfvfdd/D1118Dy7L8MlYMw8Dx48fB7/fD5OQkvP/++5rTJCdu5SDWX+k+tbVpaeKIFkxIKFaFIpdciwQvUkIq0uSElTQNet1k3VZvrIyWbKT83F4GmiPsD43A4L7PxAJ3/+fAjozCWGs7jNRdQmFrMG+R6GVai1uWZWH0zmeKAnf46g540uWHjRs3wurVq22x2rLs9JtzqyZwhcKWZTlR8pP11eB/aH1AHRJISm70n7gmp6Wlgd/vd0XdkLLx983w1sGr8MvSesj84CK8dfAqvHXwKvy0qI7//2cX3VO3bz/o4wVu2sYauNYeHkjKbLfka+09kLaxhhe2t+7b55Y8PDwMXV1d0NvbC6tWrYLKykoYHx+Ho0ePQkZGBhQWFob95qOPPoKMjAw4cOCALeXmhnpM8Pv9/ICT0GOCuCVnZ2dbuv50c3MzP895urkly4nbb7/9FoZGx+H9oy3wb6Wn4dUtp+FA9VVYt24d1NbWwrNnz+C7776jvi9aRKGaUCRCWDrXkiZuaWLIqDiyynJLhDoR9pG63rq13ijt1xot2Spx62QZ6GkfaQJ3YFc5jDbERtvkZN4i0Ynj4tbxuWCT4zDSelBZ4DZthoHH7fDkSeRunFpxm+XWivRLkRO4UmHLspy4/e3ZO6alVwmynu2mTZtkzyEd7UiC2FiZt4TPLnbC9mO3gGVZOHOjG35eYt5akWanX4vANQupsHUioBTLsnD+/HnIzs7mXY8PHDgAH3/8MTx8+FB0XllZGWRkZMDBgwdtLz+784TGpk2b4MiRI9DV1QXp6enQ1dUFfr9fFFDKaJA3Ep2ZKbsIQ6Pj1HMYhuEDSrnRmmZVecgN7mzbtg2GhkfgrQOXYM/JNpj8KghtgVF4470zcP1OAPx+vyiolNY0abXckmi4ckGEpMIlPT1dJH4icWs1Q9xK70Geg4h+OeHuBtwqbvW6JbutDHS3j6HAUlOuyP8Bk4NDjtcPN4LiNvZxXNyyrAvmgo2PwOiNPYrzbycnxmxN03Sz3BKkApcmbFmWBaasASYnrS8Hv9/PW2XP/f/tvV1vHOeZrtv/I0frhCf8BZljYR3tXtiDLCLZB0FmIMBAgGDvmWFiJrCR4VLGgjPBSrKHMCatoaxQZiTzQxQpihS5KVE9kiVSNDUUqTJlx4kSxxETy3Zi+lO2TDz7gKxWs1lvdXXf3ay3uq4LuJGYapLNq596u+6u6urLl523qz5i5MNsxOXrP94ttE+/uGT/61eH/8puox8FFBbcvz023baPAvrbY+0rto38zffu3bO/+7u/s+9+97v27LPP2ne/+11bW1vbd5vBwUH71re+ZadPnz70xy6tOahN+FnT29u7Rffy5cst/SiguIIb9fFAefkooLj8eOSW9Tw3Y//3v/+nXV1/28zMSrN3bfKV5s8ISVJuwyJTb15qy0vtzzjMI7fV5ate+a2+bdoz0uzcJDn7RTlDptnTyn1+DJraHt99zx6Oz9nDkRmKbavdkkzFi3K7vZ3+e8E+eO+Bvbv0Uy+K7fZ2Po/chqkuuFHFdnt72/6/V9t3yqHvURfm7/z7NfvfE2v2P47NteSiUod9/8O0+rTkdv6epH/zX/7yF1tYWLAf/OAHduzYMbtx48a+99iGHwP0q1/9KvU5THMOqj+u6uc//7lNTU3ZmTNnKqco/+Y3v2n4hSbXe69rC+79+/f3Peb/9E//ZPfv32/6b/ElyuPx8uJr+5z9X89fsg8+/tyO/nTB3njrz6n/baR9afaF+DfffNO+973v2dzc3L6vB0Fg3/ve9/Z95F4eoz5PtuqFg04M5bbz40259SF//fNv7eGN51MvttvbnX/k1qzQ0rTyvluh0NKkMRtx+e0fH1bea+vrbHdaWvE3v/TSSx1TbFUn7Thy6yq3/8+/X91Xbjlyuz+vbPze/o9/vnDA298eu2jnrx/O+/hJemlmX+Xdd9+1Z599NvLrzzzzTO6LbVKvBLckOpTbmnzw4DV7eP25VIvt9nbnH7ml3LZ3Nlz57R8f2tH/t2xf//GC/Z//Ml95/61vs91pUf/m4eFh+/u//3t7+eWXU/9bfHDyzDPP7HvP7dbWlt28eXPfe26V97+fmls/UGyDILAgCGx7e9ueffbZyntun3322dRdpvl41F7Z/H/+y4z1DV6zpTa+R574kyRzMzU1deBI4dTUlPPraf9NPiSPz5O4Ja0K5TYiHzx4LdViu719eO9jSev+U27bOxtR+d8Ta/b1Hy/Yidnd759/9b59/ccL9j+OzdnXf7zg1dWS2/0ercP+PeqT6Xe/+10bHR09lMfnsNKok5///OeV047rXS35H/7hH5q+WnJUsd3e3rbLly/bt771Ldve3r1a8re//W379re/naurJRNSG+YGr1kLbjs/lFtPk/WNj3LrT7ldufe2Pf3iUqXU1mb+1fv2v3610vTn3Lb7/ndC8vg34yRb4fEgzYS5wWvWgtvOD+XW02R946Pc+lNufUvW7z9/M046MTwepJkwN3jNWnDb+aHcepqsb3xZv/8+J+tus37/+Ztx0onh8SDNhLnBa9aC284P5dbTsPGRTg2zTba3mQPfwuNBmglzg9esBbedH8qtp2HjI50aZptsbzMHvoXHgzQT5gavWQtuOz+UW0/Dxkc6Ncw22d5mDnwLjwdpJswNXrMW3HZ+KLeeho2PdGqYbbK9zRz4Fh4P0kyYG7xmLbjt/FBuPQ0bH+nUMNtke5s58C08HqSZMDd4zVpw2/mh3HoaNj7SqWG2yfY2c+BbeDxIM2Fu8Jq14LbzQ7n1NGx8pFPDbJPtbebAt/B4kGbC3OA1a8Ft54dy62nY+Einhtkm29vMgW/h8SDNhLnBa9aC284P5dbTsPGRTg2zTba3mQPfwuNBmglzg9esBbedH8qtp2HjI50aZptsbzMHvoXHgzQT5gavWQtuOz+UW0/Dxkc6Ncw22d5mDnwLjwdpJswNXrMW3HZ+DqXcPv300zY0NLTva0NDQ/b0009H3v6pp546kOPHj1f+fW1tzZ566inn7xsaGrKBgYFE9+348eN2+fLl1B+I2rDx1c/Q0NC+uUjyWJ8/f37f186fP9/QzyB6fJztemtKmLh1q17Onz9vTz31lK2trTV9PwcGBmxoaMjW1taavh++5DDnINzGqx/ntbW1ytcbXQcaXXuyEB+3y3ak9rELZ6J6u0y6HoTppO2y0bR7buL25wYGBiL/LXz8kqZ2HzDq516+fFlev33yWs951Po2NDRU10HoqfZ7opLWtpKXtS7PaUu5HRgYaGhhqS2wtRuP68nI9ftrF8N6vzdpET7MsPHVT7gjkeTxc80M5fbwc1izHZbJejsycfMRlagX65JmYGBAekKv3okOdxrSfjx9n4PQ2/nz5/c9ztUvbIb/nvTnNbL2ZCV5ec6J2nGvLi7VZTdpkemk7dK3uQm3tdrH7Pjx42177o4qt8ePHz/UgpbW9lj7Yk+Sfffa/fVqd66ifPnyZcotaVvaduT2/PnzBwY36TCHG8vx48dtaGioJeXWx6OzcWHje5JGX4WNKjHhk9XTTz+d6HubLS+kftKc7aeffjpyh7V2TVFeoGv2e5MUpXAnOvzvoaGhhkqZTznMOQifT8LH+fLly/t8R60L1bdX1p6spNOfc6K2yyTbapLHspO2S1/mJnzB4TC3OdeMhPeldo1WXuhMy2sSB9WzW1teq1NdhF3bEkduSRppa7mNG+bqAlr7xJC03Nb+3KhX1sINLms7G2x8T9LoKWLhDIWPefUObfVtwhdgOu0IjO85rNmuPu20eg7qFZbaJ9ywsEb9jiRHD2rXt7gkffGlmWLsWw5rDurtXNWevVH93+rak6Xk5TlnYGDAuc26ToHN03bpy9xEHQyJOoU8fHxauc3Vrvnhi131ym4WvNZzHv5N4XNb0nLresx8TF7WujwntSO3rSi3rt8dtTDFJe0HISpsfAeT5ChK1E5LuEDXPvmF89XO05vIwRz26ajh2hL3xFtvTak9LS68fZK5CeesFX9PuB6m/RhmbQ7CWYh6sTN8gavace1Oa7NrT5aSl+ecqFNc4x77JOmk7bLR+HbkthVnztS++FX9b+H+RLuPzKexPdYeIKp2EZew3IZHfUNvvq6beVnr8pAf/vCHkV/3/sjt+fPnGyq3tRtT+PPC+1N928uXLx/KhvXDH/4wMnHfw8bXWFyvMIZHYWp3aKvnKywfeTmNrJXJwmyHj33cmpPkCF3tTlPSIwX1jvo0sjNdu6PlS3yeg+qd0aidrfDfq2/fyFpQ7+gGj4c/qS5M4b5I3PaZ9CiUr9vlYcT3I7e1L1jUO7oY7iuGzxEDAwP71o2wuNUWu6x4TZLqvyvp31h9MbXQUegzynea1zvJw1qXh8Q9t3nxnttWltvwKFz4M6uLTe0C2MjpguoD0Oj3sPEli+uU4+p5iLpNOFvhApvHq1y2IlmY7erTz2tPVQ+ftJMcuY3a+U1SguJuV3tUN+5oRfWLMWk/7lmdg7jnjfAxamRnrpEXOXg80k943YVwu6stpK4jt1ndLg8jnVZuw/kIvyd8W0PUGh7ORTse+7S2x6GhoX0uq18AdCXcT3f9m09HbdN0S1qXei/eHlq5rX6/wvb2wSeL2o0pLLfhEZfwyci1kYS/M+pJK/x5rq8fxoPQ6Pew8SVL9SuEcameseont+qdkkavmEqyM9u1R+e2t/dfxbG23NY+mbvWidqjubVP1q6dserf43qBLeoFQl9fhPF5DuJ2zMI1ofo5JukOV9K1h8fDnzz11FP7HuPabSnJaclZ2i4PI76dllyb2oMYceU23B9wfcRQJ3iNS+2ZLeE+d/XBgPBIdtRR2jAcuSXtTG2hjSq4h/I5t80m6r1Qrp3H7e0nR+niSmy4CDb73ppmH4h6/782bHxPUu9VwySvClY/+dV7JdKn0wt9T1Zm2/W+6/Dxrnfk1jUX9S5kUu9zceMKkmunwMcZ9X0OandWox7vqKPxrVh7eDz8SPi+2LgXMJott+H8+LZdHkZ8P3Jbu8bGlduwuNWuF3Hv423XfmQa22N4lDX0VX3hLKXc+rZOdvpa18lxHamt/Xrbym2jOwVRi1h4inH1+3Tjym2Y6ieo2oWsekM7zAcjyYNTHTa+ZGn0yG3tpfujrpR6mLOR9WRhtsOd0biimeR9/FH/Vq/c1palRr7ftRNdeyTCh1MifZ+D2uIa9REe4Q5s0p+ZpSO3vj0eaaT6NNNwe0myn1K7bWVpuzyMHPZHejXyIkJYzmq/FnXEvvqxiiq3UWfYtPMgiQ/bY+il3kW6qtfBqKO/HLklrUi957Hqfz+0I7dxnwcWVVrDU5LD761+D2317eqV29pFqXojPcwHpJEHaHubja+RuUpabqM+0iVqga13tI08ie+zXfu+SNc6FFdg4470xJXTJFfhjjudzrUTHe6wVV+hMu1T6HyfgzDh+l/rK/x63JV0ox57ym320q4jtz5ul4eRdsxNK86YCNf02m00qtxGldk8ltso7+HfWO/Ibfi94RmXrtOSa99emMa+Vl7Wuk5MvbfctP3IbZhwgYlbAGrfdxb1pBD+DNeiVn3bcGOsftWu9qM7wn877J2TpFevZONLlqSfb+cqEXl5df0w4uNs127jrlPSol7h395+8kTsOlLgmr/at1REpd5ZAlGnc4V/S/UVetNYx7I2B9Xv31tbW6u4DXfSqh+HJI9d3GPvW3x8PNJMK8ptFrfLdsXHI7e1p9dWJ+o5oPZFz7yelhzlMPz7mzktOeo6OaFnjtySdqZt5TbuVZmoK4+G/xb3amejR27DnY9wYXK9Z87HcsPG507UZ7HVC+XWnxzmhYTiroZe+8QbddXiejsuUQXHdcQ26om+dqegeieq3u9O4yyUrM5B3Pof5XlgYCD2M7Oz7D3txyPtNFNu87RdNhrfym2StxfE7YOGPyOPR26rU30F+aiLbVbPedR7oOu9sEO5Je2M1xeUynPY+Einhtkm29vMgW/h8SDNhLnBa9aC284P5ZYQQgghhBBCSOZDuSWEEEIIIYQQkvlQbgkhhBBCCCGEZD6UW0IIIYQQQgghmc+Bcvvaa68RQgghhBBCCCGZyoFyu7W1RQghhBBCCCGEZCqUW0IIIYQQQgghmQ/llhBCCCGEEEJI5kO5JYQQQgghhBCS+VBuCSGEEEIIIYRkPpRbQgghhBBCCCGZD+WWEEIIIYQQQkjmQ7klhBBCCCGEEJL5UG4JIYQQQgghhGQ+lFtCCCGEEEIIIZkP5ZYQQgghhBBCSOZDuSWEEEIIIYQQkvkkLrc3b94kOU3aQ8o8kmbCvBBCCCGE5CsNldudnR2Ss9y86W+5TdsN8Te1c8u8EEIIIYR0fii3JDaUW5LFUG4JIYQQQvIXyi2JDeWWZDGUW0IIIYSQ/IVyS2JDuSVZDOWWEEIIISR/odyS2FBuSRZDuSWEEEIIyV8otyQ2lFvSjjx69MhWVlbswoULNj8/b2+//XZLfz7llhBCCCEkf6HckthQbkk78s4779iFCxdsfHzczp49a3fu3Gnpz6fcEkIIIYTkL5RbEhvKLWl13n//fRsYGLB/+7d/s/X1dTt+/Lj96Ec/sr/85S9tm1vmhRBCCCGk89P6cnv/qh07etSOHDmyl6N29NiQ3d93u/t2deiYHa26zbGh+6nLIAfTqnI7PT1dSdrl9tGjR/buu+/aG2+8Ye+88449fvw4dc/tyhdffGEfffSRffzxx6nflzAjIyPW19dny8vL9sc//tH+9V//1V544QXKLSGEEEIIkdLacnv12G5RvVpdVO/b1WNH7ciRY3Z172v3h47akaNVhff+VTt25Igdu5q+ELI/nVhuHz58aHfu3LGbN2/a0tKS3bt3z7a3t523f/TokT18+NDef/99++yzz1J/TJLm0aNH9rvf/c7eeOMNe/DgQer3Z2dnx37729/aj370I+vr67Pf/OY3trOzY2+99ZY9ePDAHj161La5pdwSQgghhHR+Wldu7w/Z0ZiCevXYUTs6dN92dq7asSNHbej+/n+/P3TUjhy7mroQsj+dWG4//PBDu3//vi0vL9vNmzft5s2btrq6au+88459+eWXlds9evTIHjx4YHfv3rXNzU177733MlNuHz16ZL/+9a9taWnJNjc3bWtrK9X7E3otl8vW19dnP/nJT+zhw4eHNreUW0IIIYSQzk/Lyq1cTq8e2380l3iRTn3P7ZdffmnvvPNO5QjuzZs37datW/b222/bF198Ye+//75tbGzYysqK/eEPf7Avvvgi9cciaT788EN77bXXbGVlxW7dulU5/Tqt+/Po0SNbXFy0ixcv2s9//nPr6+uz48eP2/j4uF26dKkt941ySwghhBCSv7So3N63oaNH9o7MNndHOHLrZzq13Ib5+OOP7Te/+Y3dunWrcpry3bt3bWVlxdbX11v6PtDDyIcffmhBENitW7fs1q1bdufOHXvvvffsk08+Se0+ffTRR7awsGAjIyP2z//8z9bX12cvvPCCTU5O2qVLl+zdd99t+9xSbgkhhBBCspu+vr5K4r7e0nLb7Htm718dsqNHn7wnl7Q+Pzr+vDNx39eJpyVHZWtra99pynfu3PHqFOQvv/zSHj9+bJ9//vm+U6er8+GHH9rdu3ft5s2btrKyYnfu3DlwqnVa931nZ8cePHhgx48ft76+PiuXy/b48WN799137U9/+pN99NFHtrOzY9vb2y05XZlySwghhBDSOakusWGRjfpai8pt9Pto47NbiI8cOWJHjh6zqw19L2kmjRbbnZ18lNvPPvvM3nzzTVtaWqqU25WVlbYcUWw2f/nLX+zBgwf21ltv2aeffhr5N2xsbNitW7dsZWXFgiDw6v7v7OzYvXv37JlnnrFnnnnGgiCwL7/80paWluy5556zubk5+9Of/mQ/+9nPbGBgwB4+fChdxZpySwghhBDSWakts1FHc704crv78UHaac0kWRoptjs7nV9uP/jgA9vY2LCbN2/aq6++am+//bbdu3evcpGpDz74IPXHbGdnx+7cuWNLS0uV06WrP9rns88+s3v37lWK7dramm1tpXsBqaiEF5N67rnnKvfv3XfftZ/97Gf23HPP2cTEhJ0/f94uXrxoH3zwgfQ+Z8otIYQQQkjnJa7Y7ux49J7b3astc2ryYSRpsd3Z6ez33H7wwQe2trZWOVIbXtjos88+s9dff91u3rxpd+/ebelH1DSb1dXVSgFfWVmxe/fu2SeffGJffPGF/frXv65cPGpjY8Pee++91E9Frs3jx49tamrK+vr6bGBgoPKiwaNHj+xXv/qV9fX12dmzZ+3x48f2+PFj++KLLzhySwghhBBCDsRVbHd2fLpaclOnNpN2p1PL7UcffVS5UvKtW7fsz3/+875/f/Tokb3xxht28+ZNe+utt1J/HN5++227e/du5ejsrVu37PXXX68U21dffdXu3r1r77//fur3NSqffPKJDQ4OWl9fn7388sv73s88MzNjfX19NjEx0ba5pdwSQgghhHROoortzk4rP+d256odS/I5t64jtBy59TKdeFryX//6V9vc3KxcHfnBgweRt/v888/tjTfesOXlZfvrX/+a+mPx8ccf2+uvv14ps7du3bLl5WVbWVmx27dvt/VzY9U8fPjQnn/++crFpKr/pl/+8pfW19dn8/Pz9vjx45ZcyItySwghhBCSv7Sw3O7sflbtkaN27Gr16cn37eqxo3akUlz3TmE+dvXJZ9rev6qf1kzakk4st/fu3atcPOr+/fuxp/A+evTIXnvtNdvY2PDi9OTw/qyurlZKbngBKZ+u7lyb3//+99bX12f9/f321ltv2WuvvWa/+MUvbHR01P7zP//Tnn/+eXvhhRcqnzXc6rml3BJCCCGEdH5aW253dmzn/pAdO3p09yrIR47YkSNH9xfZnR3b2blvQ8f23+bYUO1tiA/pxHIbBIHdvHnTXnvtNfv888/r3v6TTz6xjY0Ne+utt1L9vNgwjx8/tj/84Q/26quv2quvvmp37tzx5sJXYT799FP78MMPK4X79u3b1tfXZy+++KI9evTI1tfX7bnnnrOLFy/azs7uqck/+clPbGVlJfbjjpqdW8otIYQQQkjnp/XllnRUOvE9t3/+85/t17/+deUCUkny4MED+/3vf28ffvhh6o/Jzs6OffHFF7a1tWXr6+v2u9/9zrsLSI2OjtpPf/pTu3Dhgn322Wc2PDxsP/jBD+zWrVuV23z66af22WefVS4i9fHHH9vnn38uXUjKNbesX4QQQgghnR/KLYlNJ5bbTskHH3xgb775pr333nup35fa9Pf3Vy4S9eabb9r3v/99O336tH300UepzC3zQgghhBDS+aHckthQbkkzKZfLdvLkSRscHLQXX3zRzp8/X7ki9WEcZabcEkIIIYTkL5RbEhvKLWkmjx8/tk8++cT+8Ic/2B//+Ef79NNPbWfncIrtzg7llhBCCCEkj6HckthQbkkWQ7klhBBCCMlfKLckNpRbksVQbgkhhBBC8hfKLYkN5ZZkMZRbQgghhJD8hXJLYkO5JVkM5ZYQQgghJH+h3JLYUG5JFkO5JYQQQgjJXxoqtySfSbvIMo+kmTAvhBBCCCH5SuJySwghhBBCCCGE+BrKLSGEEEIIIYSQzIdySwghhBBCCCEk86HcEkIIIYQQQgjJfCi3hBBCCCGEEEIyH8otIYQQQgghhJDMh3JLCCGEEEIIISTzodwSQgghhBBCCMl8KLeEEEIIIYQQQjIfyi0hhBBCCCGEkMyHcksIIYQQQgghJPOh3BJCCCGEEEIIyXwyUW7v3r2b+n0gfobZ0DI3N2cbGxuEHMjc3Fzq85nlsDbhD3/ZDf7wh7/sJhPl9s6dO6nfB+JnmA0tly5dSr1EET9z6dKl1Oczy2Ftwh/+shv84Q9/2U0myu1//dd/pX4fiJ9hNrRQbokrlFstrE34w192gz/84c+vvPLKK4mTiXL76quvpn4fiJ9hNrTMzs6mXqKIn5mdnU19PrMc1ib84S+7wR/+8OdXXnnlFUuKl+W29lzz5eXl1O8T8TPMhpaZmZnUSxTxMzMzM6nPZ5bD2oQ//GU3+MMf/vxKpsvt3bt37eLFi/u+dvPmzdTvlx8pWbFQsEKhaKXU74sf8W42yr3WVShYoTZdvVZO+75FhHL7JNO/+Jp95ZtfrcrXrG8x/ftFud2yrVLx4DZVKFih0GW9ZQ/uX0S8W5tiPRasWPLg/uGvs/1tbTmeI/3bjr3ytzd3zhnbc+rTDHrlr1GfHsRrfyk5zGy5DYttbbm9fv16+g+kByn3dnn7RJpWvJuNyCeZvRclPCy4Fy9eTL1EpZ9T9o1vftW+8s3v2AsHvp7fglu7Dqca1xNpuKPs4bbl3doU59HD4K/T/JWtt8tVZHefI33y6pW/DJZbr/w16lu7gLQAACAASURBVNODeO0vJYeZLLfVxbZ2p6pcLqf/QKaevSeGYu/e/5Y8uE/px7vZcD3JlIpevjpNud0rtv9yyoP74lcyUW63tqyyNnpWcL1bm+p69Cv46yR/YbHNzllnXvnLYLn1yl+jPj2I1/5Scpi5cltbbGt3qhYXF9N/INNO1eK1ewTXv6KURrybjdhy699iOj09nXqJSjO7pyLXHrElGxsbNj09nfp8Jt5+9ra7rl5/dgi8W5uSePQo+Oscf1ncZ/HJXxbLrVf+GvXpQbz2l5LDTJXbqGJbW24XFhbSfyBTzu6Tw96rnh7uyKUV72bD8SSz7/HzKBcuXEi9RKUXjtrG5cKFC6nPZyV1n0j9O3rr3dqUyKM/wV+n+PNv28yWv61Mlluv/DXq04N47S8lh0nK7ff6vp9+uXUV29pyOzc3l/4DmWr23rNZORU5m08W7Yh3sxH1JLO3CPj4YkSuy+3icfubb37V/uYXc+nfFw+TrXK7ZaWiX6c9erc2JfToS/DXKf529198fP7Lhr+tTJZbr/w16tODeO0vJYf1yu33+r5fSWrlNq7Y1pbb3H/eYsQQhReX8nnjPIx4NxsZu1ry1NRU6iUqteyV22+MeXBfPMzU1FTq81lJBsutd2tTlceD8ccb/jrMn/NMs/DTH6ri0bVEvPG3tRV7lW5fr9jtlT+HT598ZcpfSg7jym11sU2t3NYrtrXl1qv3fqWQ6J222qO5+Yx3s+F4BXX3MfRvMaXccuTWFcqtFu/WpoQefQn+OsRfordR+bc/442/ra1MHrn1yl+jPj2I1/5Scugqt7XFNpVym6TY1pbbycnJ9B/ItOI6Eujx58MdZrybDeeTTNnLq1xPTk6mXqLSC++5jYtX21bS99x6tH155S+xR3+Cv07xl6S4+ldu/fG3lcly65W/Rn16EK/9peQwqtxGFdtDL7dJi21tuZ2YmEj/gUwpsVcZ5MJS/s1GvXLr2enJ58+fT71EpZc56/vHqM+3JRsbG3b+/PnU57OSek+kHu6seLc2eeoJf53vr/5ZFf6VW5/8ZbHceuWvUZ8exGt/FYeHe3DNy6slN1Jsa8vt2NhY+g9kKqlXiPwsTIcZ72bD+STj35P31lbey+1G5dRkjt4eTHbKrZ/blndrU12PfgV/neSv3jbq3zbslb8Mlluv/DXq04N47W8rnU8A8a7cNlpsa8vtyy+/nPoDmUoSHJnN+4WlvJuN2Pfc+ncK+cTEROolKu3sftbtV+0r/3jcpvf92yn7xje/Zn2L6d/HNOLVK8eunZHwQise7RSH8W5tivPoYfDXYf4qb7GK2CH2cDv2yl8Gy61X/hr16UG89pfSWaNeldtmim1tuT1z5kz6D2YKSVSIwicMj54UDjPezYbzPdL+XOimOpTb6iL71d2SW0m+T1f2sdxmZbva2vJwbYr16N/bW3z25/NOsdf+tp68IO/zlX6985fBcuuVv0Z9ehAf/YUXRk3r+cKbcttssa0tty+99FLqDyrxM8yGlnPnzqVeooifOXfuXOrzmeWwNuEPf9kN/vCHP7/iTbltVX75y1+mfh+In2E2tIyPj6deooifGR8fT30+sxzWJvzhL7vBH/7w51c6rty++OKLqd8H4meYDS2UW+IK5VYLaxP+8Jfd4A9/+PMrr7zySuJkotz+x3/8R+r3gfgZZkPLf+v974Q4k/Z8ZjmsTfjDX3aDP/zhz6+MjY0lzoFyu7m5aUEQ2MbGhq2vr9va2prdvn3bVldXbWVlxZaXl21paclu3Lhh169ft2vXrlm5XLbFxUW7cuWKLSws2Pz8vM3Nzdns7KzNzMzY9PS0TU1N2eTkpE1MTNj4+LiNjY3ZyMiInT171s6cOWPDw8N2+vRpGxoaslOnTtnJkydtcHDQTpw4YaVSiRDShqRdnojfSXs+CSGEEJLP1JbbjjotuVQqJf6DIF8EQZD2Xcg0+AMXzIYG/jTwp4E/Dfxp4E8Df0a5hfzCAqCBP3DBbGjgTwN/GvjTwJ8G/jTwR7mFHMMCoIE/cMFsaOBPA38a+NPAnwb+NPBHuYUcwwKggT9wwWxo4E8Dfxr408CfBv408Ee5zQejPdbd3WOjzPs+WAA0Ot4f203TdPxstBn8aeBPA38a+NPAnwb+vC23JSsWClYsUW51AuvvLljPaPt/02hPwQqFeum2fk+2OxYAjc72x3aj0Nmz0X7wp4E/Dfxp4E8Dfxr4867clq2368kOXZbKbdDfY91VO6I9EXuiwWi/dXdX3cZ1SCgYtZ7ughWi9qxHeyJ3frsde77JdpyfJHJnPu7+1Pwu1/3Yu4X11NtJr/u7dktH4r8p5j7ndgFo0Xy1wh/bzSFuNz3dT/7u6DvMtuUJ+NPAnwb+NPCngT8N/PlUbktFKxS6rLcc/v/slNugv9sK1acvBqPWU7vjHPRbd/UO6t5t9u8fBjba323d3f27O6KunfREh5OC3R307n6rHfOgv7vOznQD92ffXVN20pP/rtGeZEfUgv74n5O/BaCV86X7Y7sJ71q7t5vd0lr5HcHo/v+uuS9sW+mDPw38aeBPA38a+NPAn0/l9kDRzUq5dZy+ONqzbwc5cge25jY22l85KuXaeay3U7l7o72jON09Frmrm3QnPcH92XdzZSe9gd/FDniTtGq+wttK/thuKjdv93YTVexHe6y7Z/RAgWfb8gP8aeBPA38a+NPAnwb+KLftI+i37kK4k+zaOR21noJ7R7q5nfTARnu6nTvo4c9IdgSqkd/buvcOUm7bT/rl1vVD2W5avd0k3V4auS3bVnvBnwb+NPCngT8N/Gngj3LbPqqPLu3bYa8msP7u6J3WuJ30RnewW/Ez2n4EqoHfxQ64Tivmqy3+2G6ibiFsN25XrvvCtpU++NPAnwb+NPCngT8N/FFu20TNKZexO+nRO5NxR2G6e/p3T5+sujhM9CiHF4jptu7uqhQOfq3ekaGkO+nxN6Hc+kIr5qv1/thuHLcQtpvd7+3pr74ol/tvZ9vyA/xp4E8Dfxr408CfBv4ot23hwAVpWryTXuju33cRnn7nVVKjj9q08wjUYZVbruiq0Yr5arU/thvnLcRyu3dac/jHx/ztbFt+gD8N/GngTwN/GvjTwB/ltuXsXgG25kqrLdxJd/zShk7fbM9OetKPEeHIrQ+0Yr5a6Y/tpl3bTdTVpc35t7Nt+QH+NPCngT8N/GngTwN/lNuWsntBmoMfIdLK9w46frPjyM5h76TX2wHntGRfaMV8tcof2007t5u4i3Id/Drblh/gTwN/GvjTwJ8G/jTwR7ltGZXP7Iz819Zd9TUaD3bSnUUkyf1s7HexA67jS7llu2n3duM6yk259Rn8aeBPA38a+NPAnwb+KLetIei37jo7n4k+r3Pfj2zgyqf7dpCTnubY2OmPdXfSoz5L8+CNKLee0Px8VX1Z9cd2cyjbTeTXOS3Za/CngT8N/GngTwN/Gvij3LaA3Z3iukd0wh35qou6RL4XrnLzmB3Vmgvj9BQS/P6an9HaI1Du90DuhwtK+UIr5kvzx3ZzeNtN6Gz/BaWi/ha2LT/Anwb+NPCngT8N/Gngz9dy28K0v9yGVyNNcDQnqP4oku4nO5vhT4rZsXyyHxnYaH/4sSR7P6eJHe4kO+nJ7o/FHkmr+YnOnfTEv8s4utQsrZ4vzR/bzaFuN8HofoeOv4Ntyw/wp4E/Dfxp4E8Dfxr4o9zmkmaOQMX8MOuOOZJmtruhBUFgwWhP3dNQE/zChEe7zIL+HutmB7xt5M1ftrebRHeKbcsT8KeBPw38aeBPA38a+KPc5pLI9zE2Sb2d3N3bdDd9tKydsABo5M0f201y8jYbrQZ/GvjTwJ8G/jTwp4E/yi3kGBYADfyBC2ZDA38a+NPAnwb+NPCngb8Wl9vNzU0LgsA2NjZsfX3d1tbW7Pbt27a6umorKyu2vLxsS0tLduPGDbt+/bpdu3bNyuWyLS4u2pUrV2xhYcHm5+dtbm7OZmdnbWZmxqanp21qasomJydtYmLCxsfHbWxszEZGRuzs2bN25swZGx4ettOnT9vQ0JCdOnXKTp48aYODg3bixAkrlUpPTu8jhBBCCCGEENKR4cgt5JYg4NUtBfyBC2ZDA38a+NPAnwb+NPCngT9OS4YcwwKggT9wwWxo4E8Dfxr408CfBv408Ee5hRzDAqCBP3DBbGjgTwN/GvjTwJ8G/jTwR7mFHMMCoIE/cMFsaOBPA38a+NPAnwb+NPBHuc0+oz3W3d1jo8xyw7AAaODP2P4cMBsa+NPAnwb+NPCngT8N/HlWbkvFwt7nOobpst4y5dZNYP3dBavzcZmHxmhP7eMXlW7z5SM7WQA08Hd42x/bVr7Anwb+NPCngT8N/Gngz6NyW+7tskJXr5UPlF2t4Lai3Ab9PdZdtQPZE7EHGYz2W3d31W1ch3KCUevpLlghyR7xaE/sDmuyHd4nifyVSe5Pwvs82lOw7ti961Hrifl79nnu7nHcbrdQJP67Y+5z5haAOo9Dkhls1W3MDs/f4Wx/o9bTYGlUt78kf1f172p62xrtibw/B39ejrctz8CfBv408KeBPw38aeDPp3JbLkd8vWTFQsEKxVLTP1ctt0F/txWqTzsMdneC9+0YBv3WXb1juXeb/ft+gY32d1t3d7/193QnKLd7O+GRO6zB7o51d78d2D3t766zE9zI/WnsPis74Lue+yueg9EapzW/J8lrA0F//H3OzgKQ4HFIMoOtuk34T4fgL73tr+pnH9jO9O0v6O+2QqHm7+p2bz9yuU349+Zv2/IT/GngTwN/GvjTwJ8G/jwqt9EpW29X4cAR3cMrt47TDkd79u3YRu541tzGRvsrR5Pq7Rjufnu3dff3H9xhDY88dfdYZB1NWm6T3J+G73OzO+DRX3f9ztztgCd4HJLMYKtuE9J+f+ltf87f35LtL9nftf+fxBeOKLeZAn8a+NPAnwb+NPCngT/vy236R24jCfqtuxDu3MYVNvcOcPxpwOHRotqfHdhoT7dzxzr82cmO3DZwfxLepun3Be7zWfP1iJ39PO+AR/9NSWawVbepui9p+Wv39lf5EbVls1XbX2D93Q1sB6a955Zymz3wp4E/Dfxp4E8Dfxr487zclnu7rFAoWLHU/M9oS7mt3ul17pA6dmCt3o5h9ffFv0c18rtTLrdNHV2KK7cRX8/zDnjk35RkBlt1m+qvpuWvrdtf9a9p/GJRSbe/yJ/dxiO3SdeEPG9bPoE/Dfxp4E8Dfxr408Cfx+U2LLbKKcntKbc1pxTG7lw73qsYs2MY9Hdbd+Xf4sptePGXbuvurkrh4NfqXUW1leU2/iaNnZa8eyEcym01jZfbPVetuk31V1Px197tr+pGkWcN1P78pre/oH//RwjFvLfZTNm29opxT//ee/j3LibVM+os0XndtnwCfxr408CfBv408KeBPy/L7d77bFtQbNtRbg9cSKaVO9fhDu+T31an3Ea/TzXNI7fN7oDXXlBq12v0qZYNXaW2w3bA815u27r91dwmfjvSt79gtOZqyTEflquW2/3b1uhuMXe8dzuv25ZP4E8Dfxr408CfBv408OdbuS33WtfejlNXb9TVk9Mtt2EBC/Z/sWU71wd3YLNUbpN+jIj77xnt6X5yu+5u6xntj3zfZJ6PLuW53LZ7+9v/vfXeDqBtfwdezNn7edHfq25bkXeAU/49Bn8a+NPAnwb+NPCngT+fym2l2Gqfa9uucrt7IZmI0xRb9Z6/0Z6I0yCzVm7r7Vw3+B5idsAPkNf33LZ9+6v9mbGnJLt/frLtr8H3nrdj23LcPs/blk/gTwN/GvjTwJ8G/jTw51G5LRVbX2xbVW4rn7UZ+a+tuVpr3dMBIz5r06tyG3Ol1yc0uAPuuMBOnnfA83i15MPY/hr5971bNb/9ObeVRktvgu9t8PZ53rZ8An8a+NPAnwb+NPCngT9vyq3+kT9tK7dBv3XX2Wls5LNBd39k0o/mOPhRQMlOT2z9R4XUvc1oT4K/ybUDHl0UXFeIzfMOeL4+59ZS2f7cVyZu1fbXYIltw7bFWRF+gz8N/GngTwN/GvjTwJ9v5daZ5o/oauV2d2c22ZGYbusP30BX58qnzZfbBPc4lSO37vc37qf+BaWeXPMm+krJZvm+6E3sxcjqzWCrbhPetO3+0tn+mvkIoOqfnfSjgA6+5zZqXlu3bdVemdn1wlFety2fwJ8G/jTwp4E/Dfxp4M+bctu+aOV2dycw0VHQoPqjNg5e+TRup9G9j9i+cpvk/iS+zzFHyRr5e/ZfUKrqY1Ii7nueji4lfhzqzGBLb2OH4S+N7S9pmYwm+YtLuxdQq75acuTH87Rk2wpstH//7+px3Me8bVu+gj8N/GngTwN/GvjTwB/ltuNo5sit+AutO7ag725oQRDsffRJY2U94qclLh9Bf0/VZwZH3y9oHvwdpKXbH9tWbsGfBv408KeBPw38aeCPcttxuN8v2B7q7eTu3qa77hGjNGAB0MDfQVq5/bFt5Rf8aeBPA38a+NPAnwb+KLeQY1gAmue/9f53QuoGmoO1SQN/GvjTwJ8G/jTw1+JyOz8/b3NzczY3N2eXLl2qZHZ21mZnZ21mZqaSixcvVjI9PW3T09N24cKFSqampiqZnJy0yclJO3/+fCUTExOVnDt3zs6dO2fj4+OVjI2NVXawKqfuEUJakrRLE8lG0p5TQgghhOQrLS23GxsbXiXcwQKIIgh4datZ2LYgDuZDg7VJA38a+NPAnwb+NPDX4iO3aZdZyi00AgtA87BtQRzMhwZrkwb+NPCngT8N/Gngj3ILOYYFoHnYtiAO5kODtUkDfxr408CfBv408Ee5hRzDAtA8bFsQB/OhwdqkgT8N/GngTwN/Gvij3EKOYQFoHrYtiIP50GBt0sCfBv408KeBPw38+VZux75jX/nmV5/kX05RbqFtsAA0D9sWxMF8aLA2aeBPA38a+NPAnwb+fCq3Y9+pKbOn7Bvf/Kp95R+P2zTlFtoAC0DzsG1BHMyHBmuTBv408KeBPw38aeDPp3IbkelffM2+8s2vWd8i5RZaDwtA87BtQRzMhwZrkwb+NPCngT8N/Gngz/NyG56m/I0xyi20HhaA5mHbgjiYDw3WJg38aeBPA38a+NPAn+fldvfI7XfsBU5LhjbAAtA8bFsQB/OhwdqkgT8N/GngTwN/GvjzudyKR20pt1APFoDmYduCOJgPDdYmDfxp4E8Dfxr408CfZ+V290hteLXk5o/YUm4hCSwAzcO2BXEwHxqsTRr408CfBv408KeBP8/K7f7sXS2Z05KhTbAANA/bFsTBfGiwNmngTwN/GvjTwJ8G/rwutxu2sXjc/kb4vFt2sCAOFoDmYduCOJgPDdYmDfxp4E8Dfxr408Cf7+U2PHpLuYU2wALQPGxbEAfzocHapIE/Dfxp4E8Dfxr4873c7h25/ZtfzFFuoeWwADQP2xbEwXxosDZp4E8Dfxr408CfBv68Kbdz1vePX7O+Rd5zC4cHC0DzsG1BHMyHBmuTBv408KeBPw38aeDPm3IbFtyvVl0tufnTkSm3kAQWgOZh24I4mA8N1iYN/GngTwN/GvjTwJ9X5bb1YQcL4mABaB62LYiD+dBgbdLAnwb+NPCngT8N/FFuIcewADQP2xZA+2Bt0sCfBv408KeBPw38UW4hx7AANA/bFkQRzkV1oHFYmzTwp4E/Dfxp4E8Df5RbyDEsAM3DtgVRUG5bA2uTBv408KeBPw38aeCvxeV2fn7e5ubmbG5uzi5dulTJ7Oyszc7O2szMTCUXL16sZHp62qanp+3ChQuVTE1NVTI5OWmTk5N2/vz5SiYmJio5d+6cnTt3zsbHxysZGxur7FwFQUAIaWGiSgzJd8yiy23as0oIIYSQ/KSl5bb6B/mSUqnUcOOHfBAEvLrVLGkXKeJfXHMBjcPapIE/Dfxp4E8Dfxr4a/GR27SLLOUWGoEFQAN/UAvltjWwbWngTwN/GvjTwJ8G/ii3kGNYADTwBy6YDQ38aeBPA38a+NPAnwb+KLeQY1gANPAHLpgNDfxp4E8Dfxr408CfBv4ot5BjWAA08AcumA0N/GngTwN/GvjTwJ8G/nwut+Ve6yoUrNDVa2XKLbQBFgAN/IELZkMDfxr408CfBv408KeBP4/LbalYsALlFtoIC4AG/sAFs6GBPw38aeBPA38a+NPAn6/ltlTcLbaUW2gjLAAa+AMXzIYG/jTwp4E/Dfxp4E8Df16W27L1dhWsUOzd/V/KLbQJFgAN/IELZkMDfxr408CfBv408KeBPw/Lbbm3ywqFopXCkku5hTbBAqCBP3DBbGjgTwN/GvjTwJ8G/jTw51u53buIVFdv+ckRXMottAkWAA38gQtmQwN/GvjTwJ8G/jTwp4E/r8ptbZml3EJ7YQHQwB+4YDY08KeBPw38aeBPA38a+POo3O5eHbloJWfZpdxCa2EB0MAfuGA2NPCngT8N/GngTwN/GvjzpdzuXR25WIo7kku5hdbCAqCBP3DBbGjgTwN/GvjTwJ8G/jTw50W53SuxhTppsuRSbsEFC4AG/sAFs6GBPw38aeBPA38a+NPAnxfltk7p5cgttAkWAA38gQtmQwN/GvjTwJ8G/jTwp4E/yi3kGBYADfyBC2ZDA38a+NPAnwb+NPCngT/KLeQYFgAN/IELZkMDfxr408CfBv408KeBP6/LbWtCuQUXLAAa+AMXzIYG/jTwp4E/Dfxp4E8Df5RbyDEsABr4AxfMhgb+NPCngT8N/GngTwN/lFvIMSwAGvgDF8yGBv408KeBPw38aeBPA3+UW8gxLAAa+AMXzIYG/jTwp4E/Dfxp4E8Dfy0ut5ubmxYEgW1sbNj6+rqtra3Z7du3bXV11VZWVmx5edmWlpbsxo0bdv36dbt27ZqVy2VbXFy0K1eu2MLCgs3Pz9vc3JzNzs7azMyMTU9P29TUlE1OTtrExISNj4/b2NiYjYyM2NmzZ+3MmTM2PDxsp0+ftqGhITt16pSdPHnSBgcH7cSJE1YqlSwIAkIIIYQQQgghHRyO3EJuCQJe3VLAH7hgNjTwp4E/Dfxp4E8Dfxr447RkyDEsABr4AxfMhgb+NPCngT8N/GngTwN/lFvIMSwAGvgDF8yGBv408KeBPw38aeBPA3+UW8gxLAAa+AMXzIYG/jTwp4E/Dfxp4E8Df5RbyDEsABr4AxfMhgb+NPCngT8N/GngTwN/XpXbkhULBSscSJf1lim30HpYADTwBy6YDQ38aeBPA38a+NPAnwb+PCy3Xb1ljtzCocACoIE/cMFsaOBPA38a+NPAnwb+NPDnU7kt91oX5RYOERYADfyBC2ZDA38a+NPAnwb+NPCngT8Py22x1LpiS7mFOFgANPAHLpgNDfxp4E8Dfxr408CfBv58KrelohUot3CIsABo4A9cMBsa+NPAnwb+NPCngT8N/HlYbvelq9fKlFtoEywAGvgDF8yGBv408KeBPw38aeBPA38+lVvHacqFQtFKlFtoAywAGvgDF8yGBv408KeBPw38aeBPA38+l9uqgqtcZIpyCy5YADTwBy6YDQ38aeBPA38a+NPAnwb+fC+3W2Xr7dJOT6bcggsWAA38gQtmQwN/GvjTwJ8G/jTwp4G/rJTbYqnpn0G5BRcsABr4AxfMhgb+NPCngT8N/GngTwN/vpdbTkuGNsICoIE/cMFsaOBPA38a+NPAnwb+NPDnUbkt93bt/xig8IJS4hWTKbfgggVAA3/ggtnQwJ8G/jTwp4E/Dfxp4M+zclv7UUDKEVvKLdSDBUADf+CC2dDAnwb+NPCngT8N/Gngz6Ny265QbsEFC4AG/sAFs6GBPw38aeBPA38a+NPAH+UWcgwLgAb+wAWzoYE/Dfxp4E8Dfxr408Af5RZyDAuABv7ABbOhgT8N/GngTwN/GvjTwB/lFnIMC4AG/sAFs6GBPw38aeBPA38a+NPAX4vL7ebmpgVBYBsbG7a+vm5ra2t2+/ZtW11dtZWVFVteXralpSW7ceOGXb9+3a5du2blctkWFxftypUrtrCwYPPz8zY3N2ezs7M2MzNj09PTNjU1ZZOTkzYxMWHj4+M2NjZmIyMjdvbsWTtz5owNDw/b6dOnbWhoyE6dOmUnT560wcFBO3HihJVKJQuCgBBCCCGEEEJIB4cjt5BbgoBXtxTwBy6YDQ38aeBPA38a+NPAnwb+OC0ZcgwLgAb+wAWzoYE/Dfxp4E8Dfxr408Af5RZyDAuABv7ABbOhgT8N/GngTwN/GvjTwB/lFnIMC4AG/sAFs6GBPw38aeBPA38a+NPAH+UWcgwLgAb+wAWzoYE/Dfxp4E8Dfxr408Cfl+W2bL1dBSsU9tLVa2XKLbQBFgAN/IELZkMDfxr408CfBv408KeBP9/KbbnXugoF6+otP/laqbj/vym30CJYADTwBy6YDQ38aeBPA38a+NPAnwb+vCq3u0dslSJLuYVGYAHQwB+4YDY08KeBPw38aeBPA38a+POp3JaKVigUrdTCYku5hThYADTwBy6YDQ38aeBPA38a+NPAnwb+PCq3pWLBCsWS9DMot9AILAAa+AMXzIYG/jTwp4E/Dfxp4E8Df96U2yenJJd7u55cTKr2/beUW2ghLAAa+AMXzIYG/jTwp4E/Dfxp4E8Df96U25IVw0JbffS2VDz4NcottAgWAA38gQtmQwN/GvjTwJ8G/jTwp4E/38ptxMf+lIoFKxS6rLdMuYXWwgKggT9wwWxo4E8Dfxr408CfBv408OdbuY06Qrt39LZYotxCa2EB0MAfuGA2NPCngT8N/GngTwN/GvjzptzuvufWXW45cguthwVAA3/ggtnQwJ8G/jTwp4E/Dfxp4M+bcru1dyGpgx8FtHtacvMfEUS5BRcsABr4AxfMhgb+NPCngT8N/GngTwN/HpXbyKO34inJlFuIsdsurwAAF9FJREFUgwVAA3/ggtnQwJ8G/jTwp4E/Dfxp4M+rcltVcCsfBdT86ciUW6gHC4AG/sAFs6GBPw38aeBPA38a+NPAn3fltvWh3IILFgAN/IELZkMDfxr408CfBv408KeBP8ot5BgWAA38gQtmQwN/GvjTwJ8G/jTwp4E/yi3kGBYADfyBC2ZDA38a+NPAnwb+NPCngT/KLeQYFgAN/IELZkMDfxr408CfBv408KeBvxaX283NTQuCwDY2Nmx9fd3W1tbs9u3btrq6aisrK7a8vGxLS0t248YNu379ul27ds3K5bItLi7alStXbGFhwebn521ubs5mZ2dtZmbGpqenbWpqyiYnJ21iYsLGx8dtbGzMRkZG7OzZs3bmzBkbHh6206dP29DQkJ06dcpOnjxpg4ODduLECSuVShYEASGEEEIIIYSQDg5HbiG3BAGvbingD1wwGxr408CfBv408KeBPw38cVoy5BgWAA38gQtmQwN/GvjTwJ8G/jTwp4E/yi3kGBYADfyBC2ZDA38a+NPAnwb+NPCngT/KLeQYFgAN/IELZkMDfxr408CfBv408KeBP8ot5BgWAA38gQtmQwN/GvjTwJ8G/jTwp4E/X8ptqWiFQiEmXdZbptxCa2EB0MAfuGA2NPCngT8N/GngTwN/Gvjzpdw6U7JioWCFYqnpn0G5BRcsABr4AxfMhgb+NPCngT8N/GngTwN/npfbcm+XFQpFK3FaMrQBFgAN/IELZkMDfxr408CfBv408KeBP6/L7e5R267esvRzKLfgggVAA3/ggtnQwJ8G/jTwp4E/Dfxp4M/jctuKo7aUW4iDBUADf+CC2dDAnwb+NPCngT8N/Gngz9tyq7/XlnIL9WAB0MAfuGA2NPCngT8N/GngTwN/GvjztNzuHrVt/grJlFtIAguABv7ABbOhgT8N/GngTwN/GvjTwJ+X5bZsvV2tOWpLuYU4WAA08AcumA0N/GngTwN/GvjTwJ8G/nwst3ufeVssteYoMOUWXLAAaOAPXDAbGvjTwJ8G/jTwp4E/Dfx5WG5LxUJLLiRFuYV6sABo4A9cMBsa+NPAnwb+NPCngT8N/HlXbvdOSe7qtTLlFtoMC4AG/sAFs6GBPw38aeBPA38a+NPAn2/lttxrXS34bFvKLSSBBUADf+CC2dDAnwb+NPCngT8N/Gngz7dy2+L321JuIQ4WAA38gQtmQwN/GvjTwJ8G/jTwp4E/38ptG0K5BRcsABr4AxfMhgb+NPCngT8N/GngTwN/lFvIMSwAGvgDF8yGBv408KeBPw38aeBPA3+UW8gxLAAa+AMXzIYG/jTwp4E/Dfxp4E8Df5RbyDEsABr4AxfMhgb+NPCngT8N/GngTwN/LS63m5ubFgSBbWxs2Pr6uq2trdnt27dtdXXVVlZWbHl52ZaWluzGjRt2/fp1u3btmpXLZVtcXLQrV67YwsKCzc/P29zcnM3OztrMzIxNT0/b1NSUTU5O2sTEhI2Pj9vY2JiNjIzY2bNn7cyZMzY8PGynT5+2oaEhO3XqlJ08edIGBwftxIkTViqVLAgCQgghhBBCCCEdHI7cQm4JAl7dUsAfuGA2NPCngT8N/GngTwN/GvjjtGTIMSwAGvgDF8yGBv408KeBPw38aeBPA3+UW8gxLAAa+AMXzIYG/jTwp4E/Dfxp4E8Df5RbyDEsABr4AxfMhgb+NPCngT8N/GngTwN/lFvIMSwAGvgDF8yGBv408KeBPw38aeBPA3/elduSFQsFK1RStBLlFtoEC4AG/sAFs6GBPw38aeBPA38a+NPAn0/lttxrXYWCFYpP7lC5t8sKhS7rLVNuofWwAGjgD1wwGxr408CfBv408KeBPw38eVRud4ts7ZHasvV27S+8lFtoFSwAGvgDF8yGBv408KeBPw38aeBPA38eldtSMeo0ZMottA8WAA38gQtmQwN/GvjTwJ8G/jTwp4E/j8rtVqm4+z7bA6clF6xY4rRkaD0sABr4AxfMhgb+NPCngT8N/GngTwN/PpXbqjJbna7esnZEmHILDlgANPAHLpgNDfxp4E8Dfxr408CfBv68Kre7pyBXl9lyb5cVunqtTLmFNsACoIE/cMFsaOBPA38a+NPAnwb+NPDnUbktFaPfW+v6OuUWVFgANPAHLpgNDfxp4E8Dfxr408CfBv58Kbd7HwMUeQpyqSh9HBDlFlywAGjgD1wwGxr408CfBv408KeBPw38ZabcNn9RKcotuGAB0MAfuGA2NPCngT8N/GngTwN/GvjzpdxulaxYiDkt+cBHBFFuQYcFQAN/4ILZ0MCfBv408KeBPw38aeDPm3L75ErJBy4oJV4xmXILLlgANPAHLpgNDfxp4E8Dfxr408CfBv48KrfVpydXfxSQ8hm3lFuIgwVAA3/ggtnQwJ8G/jTwp4E/Dfxp4M+3ctuGUG7BBQuABv7ABbOhgT8N/GngTwN/GvjTwB/lFnIMC4AG/sAFs6GBPw38aeBPA38a+NPAH+UWcgwLgAb+wAWzoYE/Dfxp4E8Dfxr408Af5RZyDAuABv7ABbOhgT8N/GngTwN/GvjTwF+Ly+3m5qYFQWAbGxu2vr5ua2trdvv2bVtdXbWVlRVbXl62paUlu3Hjhl2/ft2uXbtm5XLZFhcX7cqVK7awsGDz8/M2Nzdns7OzNjMzY9PT0zY1NWWTk5M2MTFh4+PjNjY2ZiMjI3b27Fk7c+aMDQ8P2+nTp21oaMhOnTplJ0+etMHBQTtx4oSVSiULgoAQQgghhBBCSAeHI7eQW4KAV7cU8AcumA0N/GngTwN/GvjTwJ8G/jgtGXIMC4AG/sAFs6GBPw38aeBPA38a+NPAH+UWcgwLgAb+wAWzoYE/Dfxp4E8Dfxr408Af5RZyDAuABv7ABbOhgT8N/GngTwN/GvjTwB/lFnIMC4AG/sAFs6GBPw38aeBPA38a+NPAn2/lttxrXYWCFcJ09VqZcgttggVAA3/ggtnQwJ8G/jTwp4E/Dfxp4M+nclsqWqFQsK7e8pNiWixYoVC0EuUW2gALgAb+wAWzoYE/Dfxp4E8Dfxr408CfN+W2bL1dBSsUSzVfL1mxpvBSbqFVsABo4A9cMBsa+NPAnwb+NPCngT8N/PlSbvdOR44qsaWidnoy5RZcsABo4A9cMBsa+NPAnwb+NPCngT8N/GWl3AqnJlNuwQULgAb+wAWzoYE/Dfxp4E8Dfxr408CfL+V27/Tjg6cl752uTLmFNsACoIE/cMFsaOBPA38a+NPAnwb+NPDnTbndsnJv14ELSoVfo9xCO2AB0MAfuGA2NPCngT8N/GngTwN/GvjzqNxubW1VrphcSbG0V3Apt9B6WAA08AcumA0N/GngTwN/GvjTwJ8G/nwrt1HllAtKQZtgAdDAH7hgNjTwp4E/Dfxp4E8Dfxr4877c7r7nlo8CgnbAAqCBP3DBbGjgTwN/GvjTwJ8G/jTw53u5LRWlU5IptxAHC4AG/sAFs6GBPw38aeBPA38a+NPAn0flttzbZcVSbbEt7P8a5RZaCAuABv7ABbOhgT8N/GngTwN/GvjTwJ9H5fbJx/4U5CskU24hCSwAGvgDF8yGBv408KeBPw38aeBPA39eldv2hHILLlgANPAHLpgNDfxp4E8Dfxr408CfBv4ot5BjWAA08AcumA0N/GngTwN/GvjTwJ8G/ii3kGNYADTwBy6YDQ38aeBPA38a+NPAnwb+KLeQY1gANPAHLpgNDfxp4E8Dfxr408CfBv5aXG43NzctCALb2Niw9fV1W1tbs9u3b9vq6qqtrKzY8vKyLS0t2Y0bN+z69et27do1K5fLtri4aFeuXLGFhQWbn5+3ubk5m52dtZmZGZuenrapqSmbnJy0iYkJGx8ft7GxMRsZGbGzZ8/amTNnbHh42E6fPm1DQ0N26tQpO3nypA0ODtqJEyesVCpZEASEEEIIIYQQQjo4HLmF3BIEvLqlgD9wwWxo4E8Dfxr408CfBv408MdpyZBjWAA08AcumA0N/GngTwN/GvjTwJ8G/ii3kGNYADTwBy6YDQ38aeBPA38a+NPAnwb+KLeQY1gANPAHLpgNDfxp4E8Dfxr408CfBv4ot5BjWAA08AcumA0N/GngTwN/GvjTwJ8G/rwotyUrFgpWLLn+vWy9XQUrFMJ0WW+Zcgs6LAAa+AMXzIYG/jTwp4E/Dfxp4E8Df6mW2/2lNbrc7hbfQvHJnSwVGyu4lFtwwQKggT9wwWxo4E8Dfxr408CfBv408JdWuS0VnxTUUtFZbsu9XVYoFK1Up/BSbqEZWAA08AcumA0N/GngTwN/GvjTwJ8G/nw4LdlZbveO7EaU2N2jt7Wll3ILjcECoIE/cMFsaOBPA38a+NPAnwb+NPDnc7kt91pXoWBdvWXHEd1kpyZTbsEFC4AG/sAFs6GBPw38aeBPA38a+NPAXwbKbeR7catPa6bcQpOwAGjgD1wwGxr408CfBv408KeBPw38Zbrcxl1hmXIL9WEB0MAfuGA2NPCngT8N/GngTwN/GvjLdLnlyC1osABo4A9cMBsa+NPAnwb+NPCngT8N/GWg3PKeW2gXLAAa+AMXzIYG/jTwp4E/Dfxp4E8Dfz6X25iP/CkVC1bo6rVygp9PuQUXLAAa+AMXzIYG/jTwp4E/Dfxp4E8Df16XW9dH/uyW3qgjupRbaAQWAA38gQtmQwN/GvjTwJ8G/jTwp4E/z8tteGpy9dHbRj7jlnILcbAAaOAPXDAbGvjTwJ8G/jTwp4E/Dfz5Xm6rT08Ok/B0ZMot1IMFQAN/4ILZ0MCfBv408KeBPw38aeDPh3Lb5lBuwQULgAb+wAWzoYE/Dfxp4E8Dfxr408Af5RZyDAuABv7ABbOhgT8N/GngTwN/GvjTwB/lFnIMC4AG/sAFs6GBPw38aeBPA38a+NPAH+UWcgwLgAb+wAWzoYE/Dfxp4E8Dfxr408Bfi8vt5uamBUFgGxsbtr6+bmtra3b79m1bXV21lZUVW15etqWlJbtx44Zdv37drl27ZuVy2RYXF+3KlSu2sLBg8/PzNjc3Z7OzszYzM2PT09M2NTVlk5OTNjExYePj4zY2NmYjIyN29uxZO3PmjA0PD9vp06dtaGjITp06ZSdPnrTBwUE7ceKElUolC4KAEEIIIYQQQkgHhyO3kFuCgFe3FPAHLpgNDfxp4E8Dfxr408CfBv44LRlyDAuABv7ABbOhgT8N/GngTwN/GvjTwB/lFnIMC4AG/sAFs6GBPw38aeBPA38a+NPAH+UWcgwLgAb+wAWzoYE/Dfxp4E8Dfxr408Af5RZyDAuABv7ABbOhgT8N/GngTwN/GvjTwJ8X5bZkxULBiqVW3Y5yC8lgAdDAH7hgNjTwp4E/Dfxp4E8Dfxr4S7Xclq23q2CFwm7cpTXp7Si30BgsABr4AxfMhgb+NPCngT8N/GngTwN/aZXbUtEKhS7rLYf/31Fak96OcgtNwAKggT9wwWxo4E8Dfxr408CfBv408OfDaclJSyvlFloMC4AG/sAFs6GBPw38aeBPA38a+NPAH+UWcgwLgAb+wAWzoYE/Dfxp4E8Dfxr408Af5RZyDAuABv7ABbOhgT8N/GngTwN/GvjTwB/lFnIMC4AG/sAFs6GBPw38aeBPA38a+NPAH+UWcgwLgAb+wAWzoYE/Dfxp4E8Dfxr408Af5RZyDAuABv7ABbOhgT8N/GngTwN/GvjTwJ9Ybi9cuGAvvfSSDQwMUG4hc7AAaOAPXDAbGvjTwJ8G/jTwp4E/DfyJ5XZj446Vy4t27tw45RYyBwuABv7ABbOhgT8N/GngTwN/GvjTwB/lFnIMC4AG/sAFs6GBPw38aeBPA38a+NPAH+UWcgwLgAb+wAWzoYE/Dfxp4E8Dfxr408CfD+W2zaHcggsWAA38gQtmQwN/GvjTwJ8G/jTwp4E/yi3kGBYADfyBC2ZDA38a+NPAnwb+NPCngT/KLeQYFgAN/IELZkMDfxr408CfBv408KeBP8ot5BgWAA38gQtmQwN/GvjTwJ8G/jTwp4G/Fpfbzc1NC4LANjY2bH193dbW1uz27du2urpqKysrtry8bEtLS3bjxg27fv26Xbt2zcrlsi0uLtqVK1dsYWHB5ufnbW5uzmZnZ21mZsamp6dtamrKJicnbWJiwsbHx21sbMxGRkbs7NmzdubMGRseHrbTp0/b0NCQnTp1yk6ePGmDg4N24sQJK5VKFgQBIYQQQgghhJAODkduIbcEAa9uKeAPXDAbGvjTwJ8G/jTwp4E/DfxxWjLkGBYADfyBC2ZDA38a+NPAnwb+NPCngT/KLeQYFgAN/IELZkMDfxr408CfBv408KeBP8ot5BgWAA38gQtmQwN/GvjTwJ8G/jTwp4E/yi3kGBYADfyBC2ZDA38a+NPAnwb+NPCngT8vym3JioWCFUuOclosWKFQnS7rLVNuQYcFQAN/4ILZ0MCfBv408KeBPw38aeAv1XJbtt6uJ6U1qtyWe7us0NVr5QNlN3nBpdyCCxYADfyBC2ZDA38a+NPAnwb+NPCngb+0ym2p+KSgloruclsuO4/0Foolyi1IsABo4A9cMBsa+NPAnwb+NPCngT8N/PlwWnJMuY094ltzRJdyC43CAqCBP3DBbGjgTwN/GvjTwJ8G/jTwl8lyy5FbaA0sABr4AxfMhgb+NPCngT8N/GngTwN/GSy35d6uhm5PuQUXLAAa+AMXzIYG/jTwp4E/Dfxp4E8Dfxkrt2GxTXpKMuUW4mAB0MAfuGA2NPCngT8N/GngTwN/GvjLTLmturJyA8WWcgtxsABo4A9cMBsa+NPAnwb+NPCngT8N/GWh3JZ7rWvv44K6eqOunky5heZgAdDAH7hgNjTwp4E/Dfxp4E8Dfxr4873cVopt8s+1pdxCUlgANPAHLpgNDfxp4E8Dfxr408CfBv48L7elolZsKbcQBwuABv7ABbOhgT8N/GngTwN/GvjTwJ/X5baxj/yh3EKjsABo4A9cMBsa+NPAnwb+NPCngT8N/Inl9sKFC/bSSy/ZwMBA+8qtM8mO6FJuwQULgAb+wAWzoYE/Dfxp4E8Dfxr408CfWG43NzftlVdesampqebLbZtDuQUXLAAa+AMXzIYG/jTwp4E/Dfxp4E8Df5RbyDEsABr4AxfMhgb+NPCngT8N/GngTwN/lFvIMSwAGvgDF8yGBv408KeBPw38aeBPA3+UW8gxLAAa+AMXzIYG/jTwp4E/Dfxp4E8Dfy0ut5ubmxYEgW1sbNj6+rqtra3Z7du3bXV11VZWVmx5edmWlpbsxo0bdv36dbt27ZqVy2VbXFy0K1eu2MLCgs3Pz9vc3JzNzs7azMyMTU9P29TUlE1OTtrExISNj4/b2NiYjYyM2NmzZ+3MmTM2PDxsp0+ftqGhITt16pSdPHnSBgcH7cSJE1YqlSwIAkIIIYQQQgghHRyO3EJuCQJe3VLAH7hgNjTwp4E/Dfxp4E8Dfxr447RkyDEsABr4AxfMhgb+NPCngT8N/GngTwN/lFvIMSwAGvgDF8yGBv408KeBPw38aeBPA3+UW8gxLAAa+AMXzIYG/jTwp4E/Dfxp4E8Df5RbyDEsABr4AxfMhgb+NPCngT8N/GngTwN/XpTbkhULBSuWHP9eKlqhUHiSYqmhn0+5BRcsABr4AxfMhgb+NPCngT8N/GngTwN/qZbbsvV2PSmtkeW2VKwps7tFuNDVa2XKLYiwAGjgD1wwGxr408CfBv408KeBPw38pVVuS0UrFLqst/zkyKzzyG1Nyr1dT76XcgsCLAAa+AMXzIYG/jTwp4E/Dfxp4E8Dfz6cltxguW309pRbcMECoIE/cMFsaOBPA38a+NPAnwb+NPCXwXK7e+S2aCVOSwYRFgAN/IELZkMDfxr408CfBv408KeBP7HcvvDCC/b888/bM888czjlttGjvJRbiIEFQAN/4ILZ0MCfBv408KeBPw38aeBPLLfLd163S4s37VfjF9pWbneP1IYXnkp+xJZyC/VgAdDAH7hgNjTwp4E/Dfxp4E8Dfxr4y0C53Z+9qyVzWjK0ABYADfyBC2ZDA38a+NPAnwb+NPCngb/Mldst2yr3WlcDn3dLuQUXLAAa+AMXzIYG/jTwp4E/Dfxp4E8Df1q5/f8Bfg3veJfi8nMAAAAASUVORK5CYII=" alt="" />

三羊献瑞:dfs/next_permutation()

观察下面的加法算式:

祥 瑞 生 辉
  +   三 羊 献 瑞
-------------------
   三 羊 生 瑞 气

(如果有对齐问题,可以参看【图1.jpg】)

其中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。

请你填写“三羊献瑞”所代表的4位数字(答案唯一),不要填写任何多余内容。

题目描述:答案1085

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<math.h> using namespace std;
int main()
{
int a[]={0,1,2,3,4,5,6,7,8,9};
do{
if(a[4]==1&&a[0]==9){
int x=1000*a[0]+100*a[1]+10*a[2]+a[3];
int y=1000*a[4]+100*a[5]+10*a[6]+a[1];
int z=10000*a[4]+1000*a[5]+100*a[2]+10*a[1]+a[7];
if(x+y==z){
printf("%d+%d=%d\n",x,y,z);
break;
}
}
}while(next_permutation(a,a+10)); return 0;
}

格子中输出:模拟

StringInGrid函数会在一个指定大小的格子中打印指定的字符串。
要求字符串在水平、垂直两个方向上都居中。
如果字符串太长,就截断。
如果不能恰好居中,可以稍稍偏左或者偏上一点。

下面的程序实现这个逻辑,请填写划线部分缺少的代码。

#include <stdio.h>
#include <string.h>

void StringInGrid(int width, int height, const char* s)
{
    int i,k;
    char buf[1000];
    strcpy(buf, s);
    if(strlen(s)>width-2) buf[width-2]=0;
    
    printf("+");
    for(i=0;i<width-2;i++) printf("-");
    printf("+\n");
    
    for(k=1; k<(height-1)/2;k++){
        printf("|");
        for(i=0;i<width-2;i++) printf(" ");
        printf("|\n");
    }
    
    printf("|");
    
    printf("%*s%s%*s",_____________________________________________);  //填空
              
    printf("|\n");
    
    for(k=(height-1)/2+1; k<height-1; k++){
        printf("|");
        for(i=0;i<width-2;i++) printf(" ");
        printf("|\n");
    }    
    
    printf("+");
    for(i=0;i<width-2;i++) printf("-");
    printf("+\n");    
}

int main()
{
    StringInGrid(20,6,"abcd1234");
    return 0;
}

对于题目中数据,应该输出:
+------------------+
|                    |
|     abcd1234     |
|                    |
|                    |
+------------------+

(如果出现对齐问题,参看【图1.jpg】)

aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAIBAQIBAQICAgICAgICAwUDAwMDAwYEBAMFBwYHBwcGBwcICQsJCAgKCAcHCg0KCgsMDAwMBwkODw0MDgsMDAz/2wBDAQICAgMDAwYDAwYMCAcIDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCABoAMcDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD8qf8Ago/B498ef8FH/wBoOLQF8Xa2nh3xFq+o3y6cLi5XTNPt5yrTyBM+VbxKUBdsIg2jI4r5r/4T3Xf+g1q3/gXJ/jX3d8ff+Cgup/sYf8FDP2ttNtfC/hvxHbeOL7xLoMT3el6e1xY3F1MiieSaW1llubZBDzYyMLeQsSy5yT8n6H+2N4u8PWUlvBpHwrkSS4nuSbn4Y+Grpw80ryuA8tgzBAzkIgOyNAqIFRVUdNatP2krN7sxpwjyLTojgf8AhPdd/wCg1q3/AIFyf40h8d64eus6qf8At7k/xrv9D/bG8XeHrKS3g0j4VyJJcT3JNz8MfDV04eaV5XAeWwZggZyEQHZGgVECoqqDQ/2xvF3h6ykt4NI+FciSXE9yTc/DHw1dOHmleVwHlsGYIGchEB2RoFRAqKqjL21T+Z/eX7OPZHn/APwm+tf9BjVP/AqT/GlTx3rkZBXWdVBHpdyD+td/of7Y3i7w9ZSW8GkfCuRJLie5Jufhj4aunDzSvK4Dy2DMEDOQiA7I0CogVFVQaH+2N4u8PWUlvBpHwrkSS4nuSbn4Y+Grpw80ryuA8tgzBAzkIgOyNAqIFRVUHtp/zP7w9nHsjiYfin4nt/8AV+I9eTH93UJR/wCzVMPjN4wXp4r8Sj/uJz//ABVdhof7Y3i7w9ZSW8GkfCuRJLie5Jufhj4aunDzSvK4Dy2DMEDOQiA7I0CogVFVQaH+2N4u8PWUlvBpHwrkSS4nuSbn4Y+Grpw80ryuA8tgzBAzkIgOyNAqIFRVUL2k+7HyR7HJp8b/ABrEML4v8UL9NVnH/s1O/wCF7eOD18ZeK/8AwbXH/wAXXVaH+2N4u8PWUlvBpHwrkSS4nuSbn4Y+Grpw80ryuA8tgzBAzkIgOyNAqIFRVUGh/tjeLvD1lJbwaR8K5EkuJ7km5+GPhq6cPNK8rgPLYMwQM5CIDsjQKiBUVVB7SfdhyR7HKf8AC9PG/wD0OPir/wAG1x/8XR/wvPxt/wBDj4q/8G1x/wDF11eh/tjeLvD1lJbwaR8K5EkuJ7km5+GPhq6cPNK8rgPLYMwQM5CIDsjQKiBUVVBof7Y3i7w9ZSW8GkfCuRJLie5Jufhj4aunDzSvK4Dy2DMEDOQiA7I0CogVFVQe0n3Yckexyn/C8vG3/Q4eKf8Awaz/APxdJ/wvHxr/ANDh4p/8Gs//AMVXWaH+2N4u8PWUlvBpHwrkSS4nuSbn4Y+Grpw80ryuA8tgzBAzkIgOyNAqIFRVUGh/tjeLvD1lJbwaR8K5EkuJ7km5+GPhq6cPNK8rgPLYMwQM5CIDsjQKiBUVVB7SfdhyR7HJ/wDC8fGv/Q4eKf8Awaz/APxVKPjp43H/ADOPir/wbXH/AMXXV6H+2N4u8PWUlvBpHwrkSS4nuSbn4Y+Grpw80ryuA8tgzBAzkIgOyNAqIFRVUGh/tjeLvD1lJbwaR8K5EkuJ7km5+GPhq6cPNK8rgPLYMwQM5CIDsjQKiBUVVB7SfdhyR7HLD48eOV6eM/Fn/g3uP/i6cPj747H/ADOvi3/wcXH/AMXXT6H+2N4u8PWUlvBpHwrkSS4nuSbn4Y+Grpw80ryuA8tgzBAzkIgOyNAqIFRVUGh/tjeLvD1lJbwaR8K5EkuJ7km5+GPhq6cPNK8rgPLYMwQM5CIDsjQKiBUVVB7SfdhyR7HM/wDC/wDx5/0O3i7/AMHFx/8AF1seEPHvxc+IP9qf2BrXxG1z+w9Pl1bUf7Pu725/s+yix5tzNsJ8uFNy7pGwq7hkjNXtD/bG8XeHrKS3g0j4VyJJcT3JNz8MfDV04eaV5XAeWwZggZyEQHZGgVECoqqO8/ZD/wCCj+tfsqf8LQ/4pPwfr3/CyfD+q6X/AMgDSrX+zrq+8r99/wAeb+ZZp5X/ACDvltW3fcXHJ7SXdhyR7Hjn/C/vHn/Q7eLv/Bxcf/F0jfHvx03Xxp4tP11e4/8Ai65/xDrk/ifX77U7lLOO51G4kuZUtLSKzt0d2LERwxKsUSAk4SNVRRgKAABVOj2k+7Dkj2OpPxz8bN18Y+Kj/wBxa4/+LpP+F3+Nf+hv8Uf+DWf/AOKrl6KPaz7sOSPY6j/heHjUf8zf4o/8Gs//AMVRXL0Ue0n3Yckex9hftefsv+IP2n/+CkH7Vx0G80e0Pw8n8S+NdS/tCWSPz7Kyuv3scOyN90x8xdqttU4OWHf49r7y+L/xD8DfD3/gpD+2v/wnOuaxon9uaN4w0nw//Z95qNt/aGry3SfZrab7GR5kL7X3R3Gbdto8wHC18G1eJ0qy9X+ZNF/u4+iCiiisTQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvSP2cv2XvEH7T3/Cef2BeaPaf8K88H6h421H+0JZI/OsrLy/Njh2RvumPmLtVtqnByy9/N694/YU+Ifgb4ff8Lk/4TnXNY0T+3Phfrek+H/7PvdRtv7Q1eXyPs1tN9jI8yF9r7o7jNu20eYDhaAPB6KKKACiiigAooooA+wv2vv2XvEH7Tv/AAUi/av/ALBvNHtP+FeT+JfGuo/2hLJH51lZXX72OHZG+6Y+Yu1W2qcHLL3+Pa+8/jH8QvA3w9/4KSftsDxzrmsaJ/bmj+MNJ8P/ANn3uo239oavLdJ9mtZvsZHmQvtfdHcZt22jzAcLXwZW+J/jT9X+ZlQ/hx9EFFFFYGoUUUUAFeqan+yXrNh+xtp3xui13w3e+Gr3xQfCE2nwvdDU7C/FvJchZVeBYShhRXDRyv8A65AcMHVPsD/gmN+2j8E/2X/hD4HsvEniG8NvqWsaxD8S/Dmsy65dW9/b3cEVnaTWFhat/ZVxbLC266F+j3BEMvlK5W3Qn7Cn7Yfgn9l/9nXwN4DT432fh3ULD40Dx14gvtLt9disr/QLSO3tJLBzFZiWZ70IZ44WjMRijxO8Eu2IgH5116p+xp+yXrP7bvx40/4deHNd8N6H4h1e3nmsDrb3UdvePDGZXhV4IJir+UkkgLhUIiYbtxRW+zNS/by+GniD4TaDZ/Dj4mf8KC0fSvEHjvUPEvhj/hDG1H/hLLLU5mk0yD+zIkfS73FoUstl9PEsGz5SUSNjc/4J1f8ABRf4bfs5fDP9nSK58dXngq3+HmseJB8RPD1tZXyv4wOpFIrDUCttE1vdpaI6FzcyJNGlowijkIiVwD4n8J/sX/Ebxb+zb4r+Lq+HrzT/AIe+E7e3mfWb+KS3t9Uee+SxWGzYri4dZWcuU+SMROGZXMaP3nwI/wCCXvj/APaB8AeCdZ0vWPB+n6j8T/7Z/wCEK0LULq5XUPFP9lRl7vyWjge2gwyvGv2ueDcyE8KVc95+zHrvwy8AfsKftDfDrWfjT4DsvEPxVuNDh0cnSvEElvEml6rNLJNO6aaSqTRbZIgoZ8OokWJgyrc/YX8RfBr4M/BSy1aH416P8Ovi94w+3WOseIrzw1q+o6l8PdNxJEkejw29uYZLy8GPMvGuY3t4JSkSiQu5APH/ANm79gDxB+1Lpuhw+GvGnw3Hi7xX/aX9g+EZ9XkfW9U+wwGeTckMMkNnvCSCL7dNb+YY2YfJhzT/AGGv2APiN/wUI+Jl34b8A2VmqaXb/adT1fUpJINM0pCG8sTSIjtvlZSqIiM7YZsbI5HT2D/gl98ZPhb+yx4n0vx74n+I9nbo9vrFt4n8LHwnOviMp/Z9xDZHQ9XgjkaB5mucO4udPdGjIYugR67D/gkr/wAFL/D/AMDvHPw18KfEWDwH4T+Hvw3uNX1xdcWy1ptVvr+8t5rcSPFZSPb3VyEnEKyXVsfKto5FR1cqHAPgOitj4h/Yv+E/1z+zf7H/ALO/tC4+y/2T9r/s/wArzG2fZ/tf+k+Ttxs8/wDe7cb/AJs1j0AFFFFABXpH7OX7L3iD9p7/AITz+wLzR7T/AIV54P1DxtqP9oSyR+dZWXl+bHDsjfdMfMXarbVODll7+b17x+wp8Q/A3w+/4XJ/wnOuaxon9ufC/W9J8P8A9n3uo239oavL5H2a2m+xkeZC+190dxm3baPMBwtAHg9FFFABRRRQAUUUUAfYv7Y37LviD9pz/gpR+1kNAvNHtP8AhXdx4m8a6j/aEskfnWVldfvY4dkb7pj5i7Vbapwcsvf46r77+O/jrwP8M/8Agpp+27H461zWNDOt6R4w0nw//Z97qNt/aGrzXKG2tZvsZHmQvh90dxm3baPMBwtfAlbYl/vZ+r/MzpK0IryQUUUViaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV6R+zl+y94g/ae/4Tz+wLzR7T/hXng/UPG2o/wBoSyR+dZWXl+bHDsjfdMfMXarbVODll7+b17x+wp8Q/A3w+/4XJ/wnOuaxon9ufC/W9J8P/wBn3uo239oavL5H2a2m+xkeZC+190dxm3baPMBwtAHg9FFFABRRRQAUUUUAfa37eP7L+v8A7T3/AAVH/a5GgXmj2f8Awru48R+NdR+3yyR+dZ2Vwvmxw7I33THzF2q21Tg5Ze/xTX6C/tJfEPwN8Pf+CpH7cY8ca5rGif23pPi/SPD/APZ97qNt/aGry3Mf2a1m+xkeZC+190dxm3baPMBwtfn1W2If72Xq/wAyYfCgooorEoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvSP2cv2XvEH7T3/Cef2BeaPaf8K88H6h421H+0JZI/OsrLy/Njh2RvumPmLtVtqnByy9/N694/YU+Ifgb4ff8Lk/4TnXNY0T+3Phfrek+H/7PvdRtv7Q1eXyPs1tN9jI8yF9r7o7jNu20eYDhaAPB6KKKACiiigAooooA+p/+Cqfw38Q+Ov+Cpv7SqaFoes64dC8Wa3q2o/YLKS5/s+yiuW826m2A+XCm5d0jYVdwyRmvliv0j/bL/b91P8AYl/4KjftjaVa+FvDfiK28b6h4j0KJ7vS9Pa4sbi7kiUTyTS2sstzbIIebGRhbyFiWXOSfjDQ/wBsbxd4espLeDSPhXIklxPck3Pwx8NXTh5pXlcB5bBmCBnIRAdkaBUQKiqo1rfxJerJg/dR5XRXqmh/tjeLvD1lJbwaR8K5EkuJ7km5+GPhq6cPNK8rgPLYMwQM5CIDsjQKiBUVVBof7Y3i7w9ZSW8GkfCuRJLie5Jufhj4aunDzSvK4Dy2DMEDOQiA7I0CogVFVRkUeV0V6pof7Y3i7w9ZSW8GkfCuRJLie5Jufhj4aunDzSvK4Dy2DMEDOQiA7I0CogVFVQaH+2N4u8PWUlvBpHwrkSS4nuSbn4Y+Grpw80ryuA8tgzBAzkIgOyNAqIFRVUAHldFeqaH+2N4u8PWUlvBpHwrkSS4nuSbn4Y+Grpw80ryuA8tgzBAzkIgOyNAqIFRVUGh/tjeLvD1lJbwaR8K5EkuJ7km5+GPhq6cPNK8rgPLYMwQM5CIDsjQKiBUVVAB5XRXqmh/tjeLvD1lJbwaR8K5EkuJ7km5+GPhq6cPNK8rgPLYMwQM5CIDsjQKiBUVVBof7Y3i7w9ZSW8GkfCuRJLie5Jufhj4aunDzSvK4Dy2DMEDOQiA7I0CogVFVQAeV0V6pof7Y3i7w9ZSW8GkfCuRJLie5Jufhj4aunDzSvK4Dy2DMEDOQiA7I0CogVFVQaH+2N4u8PWUlvBpHwrkSS4nuSbn4Y+Grpw80ryuA8tgzBAzkIgOyNAqIFRVUAHldFeqaH+2N4u8PWUlvBpHwrkSS4nuSbn4Y+Grpw80ryuA8tgzBAzkIgOyNAqIFRVUGh/tjeLvD1lJbwaR8K5EkuJ7km5+GPhq6cPNK8rgPLYMwQM5CIDsjQKiBUVVAB5XRXqmh/tjeLvD1lJbwaR8K5EkuJ7km5+GPhq6cPNK8rgPLYMwQM5CIDsjQKiBUVVBof7Y3i7w9ZSW8GkfCuRJLie5Jufhj4aunDzSvK4Dy2DMEDOQiA7I0CogVFVQAeV0V6pof7Y3i7w9ZSW8GkfCuRJLie5Jufhj4aunDzSvK4Dy2DMEDOQiA7I0CogVFVQaH+2N4u8PWUlvBpHwrkSS4nuSbn4Y+Grpw80ryuA8tgzBAzkIgOyNAqIFRVUAHldbHhD4e+IPiD/an9gaHrGuf2Hp8uraj/Z9lJc/2fZRY825m2A+XCm5d0jYVdwyRmu80P9sbxd4espLeDSPhXIklxPck3Pwx8NXTh5pXlcB5bBmCBnIRAdkaBUQKiqo7z9kP/go/rX7Kn/C0P+KT8H69/wALJ8P6rpf/ACANKtf7Our7yv33/Hm/mWaeV/yDvltW3fcXHIB830Vc8Q65P4n1++1O5SzjudRuJLmVLS0is7dHdixEcMSrFEgJOEjVUUYCgAAVToAKKKKACiiigD6T/wCCxWtDxF/wVK+PN8Mf6V4yv5MDoMyGvmyiitsTpVkvN/mRTfuL0CiiisSwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q==" alt="" />

注意:只填写缺少的内容,不要书写任何题面已有代码或说明性文字。

题目描述:printf("%*s%s%*s",(width-strlen(s)-2)/2," ",s,(width-strlen(s)-1)/2," "); //填空

    (宽度-字符串长度-开头结尾 ‘ | ’ 字符)/2,注意题目中说了偏左一点

#include <stdio.h>
#include <string.h> void StringInGrid(int width, int height, const char* s)
{
int i,k;
char buf[1000];
strcpy(buf, s);
if(strlen(s)>width-2) buf[width-2]=0; printf("+");
for(i=0;i<width-2;i++) printf("-");
printf("+\n"); for(k=1; k<(height-1)/2;k++){
printf("|");
for(i=0;i<width-2;i++) printf(" ");
printf("|\n");
} printf("|"); printf("%*s%s%*s",(width-strlen(s)-2)/2," ",s,(width-strlen(s)-1)/2," "); //填空 printf("|\n"); for(k=(height-1)/2+1; k<height-1; k++){
printf("|");
for(i=0;i<width-2;i++) printf(" ");
printf("|\n");
} printf("+");
for(i=0;i<width-2;i++) printf("-");
printf("+\n");
} int main()
{
StringInGrid(20,6,"abcd1234");
return 0;
}

九数组分数:dfs

1,2,3...9 这九个数字组成一个分数,其值恰好为1/3,如何组法?

下面的程序实现了该功能,请填写划线部分缺失的代码。

#include <stdio.h>

void test(int x[])
{
    int a = x[0]*1000 + x[1]*100 + x[2]*10 + x[3];
    int b = x[4]*10000 + x[5]*1000 + x[6]*100 + x[7]*10 + x[8];
    
    if(a*3==b) printf("%d / %d\n", a, b);
}

void f(int x[], int k)
{
    int i,t;
    if(k>=9){
        test(x);
        return;
    }
    
    for(i=k; i<9; i++){
        {t=x[k]; x[k]=x[i]; x[i]=t;}
        f(x,k+1);
        _____________________________________________ // 填空处
    }
}
    
int main()
{
    int x[] = {1,2,3,4,5,6,7,8,9};
    f(x,0);    
    return 0;
}

注意:只填写缺少的内容,不要书写任何题面已有代码或说明性文字。

题目描述:dfs,回溯

#include <stdio.h>

void test(int x[])
{
int a = x[0]*1000 + x[1]*100 + x[2]*10 + x[3];
int b = x[4]*10000 + x[5]*1000 + x[6]*100 + x[7]*10 + x[8]; if(a*3==b) printf("%d / %d\n", a, b);
} void f(int x[], int k)
{
int i,t;
if(k>=9){
test(x);
return;
} for(i=k; i<9; i++){
{t=x[k]; x[k]=x[i]; x[i]=t;}
f(x,k+1);
{t=x[k]; x[k]=x[i]; x[i]=t;} // 填空处
}
} int main()
{
int x[] = {1,2,3,4,5,6,7,8,9};
f(x,0);
return 0;
}

加法变乘法:枚举

我们都知道:1+2+3+ ... + 49 = 1225
现在要求你把其中两个不相邻的加号变成乘号,使得结果为2015

比如:
1+2+3+...+10*11+12+...+27*28+29+...+49 = 2015
就是符合要求的答案。

请你寻找另外一个可能的答案,并把位置靠前的那个乘号左边的数字提交(对于示例,就是提交10)。

注意:需要你提交的是一个整数,不要填写任何多余的内容。

题目描述:答案16    就两个,所以可以枚举一下。

     蓝桥杯感觉题目都比较迷,读懂了事半功倍,读不懂大海捞针。

#include <stdio.h>
#include<iostream>
#include<algorithm>
using namespace std; int main()
{
for(int i=1;i<50;i++){
for(int j=i+2;j<50;j++){
int a=1225-(i+i+1)-(j+j+1);
int b=2015-(i*(i+1))-(j*(j+1));
if(a==b){
printf("i:%d j:%d\n",i,j);
}
}
}
return 0;
}

牌型种数:dfs

小明被劫持到X赌城,被迫与其他3人玩牌。
一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张。
这时,小明脑子里突然冒出一个问题:
如果不考虑花色,只考虑点数,也不考虑自己得到的牌的先后顺序,自己手里能拿到的初始牌型组合一共有多少种呢?

请填写该整数,不要填写任何多余的内容或说明文字。

题目描述:用数组会爆栈,

#include<iostream>
using namespace std;
int cnt=0;
void dfs(int step,int sum) //sum:手中牌数 step:步数
{
if(sum>13||step>13) return;
if(step==13&&sum==13){
cnt++;
return;
}
for(int j=0;j<=4;j++)
{
sum=sum+j;
dfs(step+1,sum);
sum=sum-j;
}
}
int main()
{
dfs(0,0);
cout<<cnt<<"\n";
return 0;
}

移动距离:模拟

X星球居民小区的楼房全是一样的,并且按矩阵样式排列。其楼房的编号为1,2,3...
当排满一行时,从下一行相邻的楼往反方向排号。
比如:当小区排号宽度为6时,开始情形如下:

1  2  3  4  5  6
12 11 10 9  8  7
13 14 15 .....

我们的问题是:已知了两个楼号m和n,需要求出它们之间的最短移动距离(不能斜线方向移动)

输入为3个整数w m n,空格分开,都在1到10000范围内
w为排号宽度,m,n为待计算的楼号。
要求输出一个整数,表示m n 两楼间最短移动距离。

例如:
用户输入:
6 8 2
则,程序应该输出:
4

再例如:
用户输入:
4 7 20
则,程序应该输出:
5

资源约定:
峰值内存消耗 < 256M
CPU消耗  < 1000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。

注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。

提交时,注意选择所期望的编译器类型。

题目描述:考虑正序还是逆序就可以,细节不要出错。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<string>
using namespace std;
int w,m,n;
int main(){
scanf("%d%d%d",&w,&m,&n);
int t;
if(m>n){t=m;m=n;n=t;}
int ansm,ansn;
if(((m-1)/w)&1)ansm=0; //ansm=1表示逆序,否则正序
else ansm=1;
if(((n-1)/w)&1)ansn=0;
else ansn=1; if(ansm==ansn) {
printf("%d",n%w-m%w+((n-1)/w)-((m-1)/w));
}
else{
printf("%d",w-n%w+1-m%w+((n-1)/w)-((m-1)/w));
} return 0;
}

2015第六届蓝桥杯C/C++ B组的更多相关文章

  1. 2015年第六届蓝桥杯C/C++B组省赛题目解析

    一.奖券数目 有些人很迷信数字,比如带“4”的数字,认为和“死”谐音,就觉得不吉利.虽然这些说法纯属无稽之谈,但有时还要迎合大众的需求.某抽奖活动的奖券号码是5位数(10000-99999),要求其中 ...

  2. 加法变乘法——第六届蓝桥杯C语言B组(省赛)第六题

    原创 加法变乘法 我们都知道:1+2+3+ ... + 49 = 1225现在要求你把其中两个不相邻的加号变成乘号,使得结果为2015 比如:1+2+3+...+10*11+12+...+27*28+ ...

  3. 移动距离——第六届蓝桥杯C语言B组(省赛)第八题

    原创  问题描述: 移动距离 X星球居民小区的楼房全是一样的,并且按矩阵样式排列.其楼房的编号为1,2,3...当排满一行时,从下一行相邻的楼往反方向排号.比如:当小区排号宽度为6时,开始情形如下: ...

  4. 三羊献瑞——第六届蓝桥杯C语言B组(省赛)第三题

    原创 三羊献瑞 观察下面的加法算式: 祥 瑞 生 辉 + 三 羊 献 瑞 ------------------- 三 羊 生 瑞 气 (如果有对齐问题,可以参看[图1.jpg]) 其中,相同的汉字代表 ...

  5. 牌型总数——第六届蓝桥杯C语言B组(省赛)第七题

    原创 牌型种数 小明被劫持到X赌城,被迫与其他3人玩牌.一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张.这时,小明脑子里突然冒出一个问题:如果不考虑花色,只考虑点数,也不考虑自己得 ...

  6. 积分之谜——第六届蓝桥杯C语言B组(国赛)第一题

    原创 标题:积分之迷 小明开了个网上商店,卖风铃.共有3个品牌:A,B,C. 为了促销,每件商品都会返固定的积分. 小明开业第一天收到了三笔订单: 第一笔:3个A + 7个B + 1个C,共返积分:3 ...

  7. 第六届蓝桥杯软件类省赛题解C++/Java

    第六届蓝桥杯软件类省赛题解C++/Java 1[C++].统计不含4的数字统计10000至99999中,不包含4的数值个数.答:暴力循环范围内所有数字判断一下就是了,答案是52488 1[Java]. ...

  8. 2016 第七届蓝桥杯 c/c++ B组省赛真题及解题报告

    2016 第七届蓝桥杯 c/c++ B组省赛真题及解题报告 勘误1:第6题第4个 if最后一个条件粗心写错了,答案应为1580. 条件应为abs(a[3]-a[7])!=1,宝宝心理苦啊.!感谢zzh ...

  9. 算法笔记_216:第六届蓝桥杯软件类校赛部分真题(Java语言C组)

    目录 1 题目一 2 题目二 3 题目三 4 题目四 5 题目五 前言:以下代码仅供参考,若有错误欢迎指正哦~ 1 题目一 二项式的系数规律,我国数学家很早就发现了. 如[图1.png],我国南宋数学 ...

随机推荐

  1. AutoMapper之ABP项目中的使用介绍

    最近在研究ABP项目,昨天写了Castle Windsor常用介绍以及其在ABP项目的应用介绍 欢迎各位拍砖,有关ABP的介绍请看阳光铭睿 博客 AutoMapper只要用来数据转换,在园里已经有很多 ...

  2. spring mvc+myBatis配置详解

    一.spring mvc Spring框架(框架即:编程注解+xml配置的方式)MVC是Spring框架的一大特征,Spring框架有三大特征(IOC(依赖注入),AOP(面向切面),MVC(建模M- ...

  3. 浅谈AsyncState与AsyncDelegate使用的异同

    对于AsyncState来说,其MSDN的解释为:得到BeginInvoke方法的最后一个参数.而对于AsyncDelegate来说,其MSDN的解释为:得到异步调用的委托对象.也就是异步调用的委托源 ...

  4. sigaction函数的使用

    sigaction函数的功能是检查或修改与指定信号相关联的处理动作(可同时两种操作). 他是POSIX的信号接口,而signal()是标准C的信号接口(如果程序必须在非POSIX系统上运行,那么就应该 ...

  5. 《UNIX环境高级编程》笔记--sigaction函数

    sigaction函数的功能是检查或修改指定信号相关联的处理动作,此函数取代UNIX早期版本使用的signal函数. #include<signal.h> int sigaction(in ...

  6. ElasticSearch(十二)删除数据插件delete-by-query

    在ElasticSearch2.0之后的版本中没有默认的delete-by-query,想使用此命令需要安装这个插件. 首先需要进入ES的目录 [root@node122 elasticsearch] ...

  7. Oracle入门之对表内容的dml操作

    oracle表的管理--添加数据 使用insert语句向表中插入数据 插入数据基本语法: insert into table[(column [,column...])] values(value [ ...

  8. asp.net webform设计思路的思考

    我使用asp.net的webform框架进行web应用程序的开发已经差不多四年了,在整个开发生涯中,也使用过一年asp.net的mvc框架.因为网上经常有讨论webform框架和mvc框架的优劣,所以 ...

  9. scapy官方文档

    https://thepacketgeek.com/scapy-p-04-looking-at-packets/ http://biot.com/capstats/bpf.html   filter语 ...

  10. C++(十九) — const 和 #define 区别

    1.const  (1)C++对 const 常量的处理过程:当编译器碰到 常量声明 时,在符号表中放入常量,编译时发现使用常量,则直接以符号表中的值替换. (2)如果,编译中发现,对 const 使 ...