https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=251

 Network 

A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N. No two places have the same number. The lines are bidirectional and always connect together two places and in each place the lines end in a telephone exchange. There is one telephone exchange in each place. From each place it is possible to reach through lines every other place, however it need not be a direct connection, it can go through several exchanges. From time to time the power supply fails at a place and then the exchange does not operate. The officials from TLC realized that in such a case it can happen that besides the fact that the place with the failure is unreachable, this can also cause that some other places cannot connect to each other. In such a case we will say the place (where the failure occured) is critical. Now the officials are trying to write a program for finding the number of all such critical places. Help them.

Input

The input file consists of several blocks of lines. Each block describes one network. In the first line of each block there is the number of places N < 100. Each of the next at most N lines contains the number of a place followed by the numbers of some places to which there is a direct line from this place. These at mostN lines completely describe the network, i.e., each direct connection of two places in the network is contained at least in one row. All numbers in one line are separated by one space. Each block ends with a line containing just 0. The last block has only one line with N = 0.

Output

The output contains for each block except the last in the input file one line containing the number of critical places.

Sample Input

5
5 1 2 3 4
0
6
2 1 3
5 4 6 2
0
0

Sample Output

1
2
 
题目大意:
给你一个无向图,求其中割点的个数目。
输入数据
第一行一个 n 代表有 n 个点
接下来有多行,一直到读入一个 0,算整个地图的读入结束,再读入一个0,文件数据结束。
每行有第一个数字a,代表接下来的数字都 和 a 相连。 
 
 
割点:无向连通图中,如果删除某点后,图变成不连通了,则称该点为割点。
这里割点 和 桥 都是无向图里的概念,大家在这里不要混淆了。
 
求割点
一个顶点u是割点,当且仅当满足(1)或(2)
(1) u为树根,且u有多于一个子树。  
即代码中rootson >1
(2) u不为树根,且满足存在(u,v)为树枝边(或称 父子边,即u为v在搜索树中的父亲),使得 dfn(u)<=low(v)。(也就是说 V 没办法绕过 u 点到达比 u dfn要小的点)   即代码中  if(dfn[v] <= low[i])   Cut[i] = true;
注:这里所说的树是指,DFS下的搜索树。
 
求割点 Tarjan里 low  和  dfn
dfn[u]定义和前面类似,但是low[u]定义为u
或者u的子树中能够通过非父子边追溯到的
最早的节点的DFS开始时间
在Tarjan算法求割点我们要加一个数组 f[u], 判断两者是否是父子边
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#include<vector>
#define N 110
#define min(a, b)(a < b ? a : b) using namespace std; vector<vector<int> >G;
int low[N], dfn[N], f[N];
int n, Time, num;
bool Cut[N]; void Init()
{
G.clear();
G.resize(n + );
memset(low, , sizeof(low));//最先到达该点的时间
memset(dfn, , sizeof(dfn));//该点能到达之前点的最早时间
memset(f, , sizeof(f));//保存一个点的父节点
memset(Cut, false, sizeof(Cut));//判断该是否为割点
Time = num = ;
} void Tarjan(int u, int fa)
{
int len, v, i;
low[u] = dfn[u] = ++Time;
f[u] = fa;
len = G[u].size();
for(i = ; i < len ; i++)
{
v = G[u][i];
if(!dfn[v])
{
Tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else if(fa != v)
low[u] = min(low[u], dfn[v]);
}
} void Solve()
{
int rootson = , i, v;
Tarjan(, );
for(i = ; i<= n ; i++)
{
v = f[i];
if(v == )//i的父节点为根节点
rootson++;//子树
else if(dfn[v] <= low[i])
Cut[v] = true;
}
for(i = ; i <= n ; i++)
if(Cut[i])
num++;
if(rootson > )
num++;
} int main()
{
int a, b;
char ch;
while(scanf("%d", &n), n)
{
Init();
while(scanf("%d", &a), a)
{
while(scanf("%d%c", &b, &ch))
{
G[a].push_back(b);
G[b].push_back(a);
if(ch == '\n')
break;
}
}
Solve();
printf("%d\n", num);
}
return ;
}

uva 315 Network(无向图求割点)的更多相关文章

  1. UVA 315 315 - Network(求割点个数)

     Network  A Telephone Line Company (TLC) is establishing a new telephone cable network. They are con ...

  2. B - Network---UVA 315(无向图求割点)

        A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connectin ...

  3. poj 1144 Network 无向图求割点

    Network Description A Telephone Line Company (TLC) is establishing a new telephone cable network. Th ...

  4. UVA 315 Network (模板题)(无向图求割点)

    <题目链接> 题目大意: 给出一个无向图,求出其中的割点数量. 解题分析: 无向图求割点模板题. 一个顶点u是割点,当且仅当满足 (1) u为树根,且u有多于一个子树. (2) u不为树根 ...

  5. 无向图求割点 UVA 315 Network

    输入数据处理正确其余的就是套强联通的模板了 #include <iostream> #include <cstdlib> #include <cstdio> #in ...

  6. UVA - 315 Network(tarjan求割点的个数)

    题目链接:https://vjudge.net/contest/67418#problem/B 题意:给一个无向连通图,求出割点的数量.首先输入一个N(多实例,0结束),下面有不超过N行的数,每行的第 ...

  7. (连通图 模板题 无向图求割点)Network --UVA--315(POJ--1144)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  8. UVA315:Network(求割点)

    Network 题目链接:https://vjudge.net/problem/UVA-315 Description: A Telephone Line Company (TLC) is estab ...

  9. poj 1523&quot;SPF&quot;(无向图求割点)

    传送门 题意: 有一张联通网络,求出所有的割点: 对于割点 u ,求将 u 删去后,此图有多少个联通子网络: 对于含有割点的,按升序输出: 题解: DFS求割点入门题,不会的戳这里

随机推荐

  1. android自定义控件一站式入门

    自定义控件 Android系统提供了一系列UI相关的类来帮助我们构造app的界面,以及完成交互的处理. 一般的,所有可以在窗口中被展示的UI对象类型,最终都是继承自View的类,这包括展示最终内容的非 ...

  2. [备忘]检索 COM 类工厂中 CLSID 为 {91493441-5A91-11CF-8700-00AA0060263B} 的组件时失败解决方法

    检索 COM 类工厂中 CLSID 为 {91493441-5A91-11CF-8700-00AA0060263B} 的组件时失败,原因是出现以下错误: 80070005 在CSDN上总是有网友问这个 ...

  3. HTML表格与列表

    HTML表格 表格其实就是很多的小单元格,而这些小单元格很有次序的排列着,它们有很多行,很多列.这些很多行列组成的东西,就叫表格,表格是<table>标签来定义的.而<table&g ...

  4. CentOS 下SSH无密码登录的配置

    CentOS 下SSH无密码登录的配置 最近学习Hadoop.它要求各节点之间通过SSH无密码登录,配置SSH的时候费了一番功夫,记录下来,以备忘. 配置SSH无密码登录需要3步: 1.生成公钥和私钥 ...

  5. 使用日志服务LogHub替换Kafka

    https://yq.aliyun.com/articles/35979#index_section

  6. Cocos2d-x Render-NewCulling

    .cpp layout->setBackGroundImageScale9Enabled(true); layout->setBackGroundImage("green_edi ...

  7. 查找及修改日程管理系统中的bug

    1.Java没有分包都糅合在一起 2.在登录界面,没有输入账号密码,点击登录按钮时程序会崩溃,需要给给用户名和密码添加Toast (注:由于程序没有运行出来,所以是搭档孙刘兰的截图) 3.Regist ...

  8. 网络编程 -- RPC实现原理 -- Netty -- 迭代版本V4 -- 粘包拆包

    网络编程 -- RPC实现原理 -- 目录 啦啦啦 V2——Netty -- new LengthFieldPrepender(2) : 设置数据包 2 字节的特征码 new LengthFieldB ...

  9. SpringBoot java.lang.IllegalArgumentException: Request header is too large

    在application.properties##tomcat 请求设置server.max-http-header-size=1048576server.tomcat.max-connections ...

  10. hdu 1255(线段树 扫描线) 覆盖的面积

    http://acm.hdu.edu.cn/showproblem.php?pid=1255 典型线段树辅助扫描线,顾名思义扫描线就是相当于yy出一条直线从左到右(也可以从上到下)扫描过去,此时先将所 ...