原文地址:

http://blog.sina.com.cn/s/blog_49cb42490100s6ud.html  

1.     STM32Timer简介

STM32中一共有11个定时器,其中2个高级控制定时器,4个普通定时器和2个基本定时器,以及2个看门狗定时器和1个系统嘀嗒定时器。其中系统嘀嗒定时器是前文中所描述的SysTick,看门狗定时器以后再详细研究。今天主要是研究剩下的8个定时器。

定时器

计数器分辨率

计数器类型

预分频系数

产生DMA请求

捕获/比较通道

互补输出

TIM1

TIM8

16位

向上,向下,向上/向下

1-65536之间的任意数

可以

4

TIM2

TIM3

TIM4

TIM5

16位

向上,向下,向上/向下

1-65536之间的任意数

可以

4

没有

TIM6

TIM7

16位

向上

1-65536之间的任意数

可以

0

没有

其中TIM1和TIM8是能够产生3对PWM互补输出的高级登时其,常用于三相电机的驱动,时钟由APB2的输出产生。TIM2-TIM5是普通定时器,TIM6和TIM7是基本定时器,其时钟由APB1输出产生。由于STM32的TIMER功能太复杂了,所以只能一点一点的学习。因此今天就从最简单的开始学习起,也就是TIM2-TIM5普通定时器的定时功能。

2.     普通定时器TIM2-TIM5

2.1    时钟来源

计数器时钟可以由下列时钟源提供:

·内部时钟(CK_INT)

·外部时钟模式1:外部输入脚(TIx)

·外部时钟模式2:外部触发输入(ETR)

·内部触发输入(ITRx):使用一个定时器作为另一个定时器的预分频器,如可以配置一个定时器Timer1而作为另一个定时器Timer2的预分频器。

由于今天的学习是最基本的定时功能,所以采用内部时钟。TIM2-TIM5的时钟不是直接来自于APB1,而是来自于输入为APB1的一个倍频器。这个倍频器的作用是:当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;当APB1的预分频系数为其他数值时(即预分频系数为2、4、8或16),这个倍频器起作用,定时器的时钟频率等于APB1的频率的2倍。APB1的分频在STM32_SYSTICK的学习笔记中有详细描述。通过倍频器给定时器时钟的好处是:APB1不但要给TIM2-TIM5提供时钟,还要为其他的外设提供时钟;设置这个倍频器可以保证在其他外设使用较低时钟频率时,TIM2-TIM5仍然可以得到较高的时钟频率。

2.2    计数器模式

TIM2-TIM5可以由向上计数、向下计数、向上向下双向计数。向上计数模式中,计数器从0计数到自动加载值(TIMx_ARR计数器内容),然后重新从0开始计数并且产生一个计数器溢出事件。在向下模式中,计数器从自动装入的值(TIMx_ARR)开始向下计数到0,然后从自动装入的值重新开始,并产生一个计数器向下溢出事件。而中央对齐模式(向上/向下计数)是计数器从0开始计数到自动装入的值-1,产生一个计数器溢出事件,然后向下计数到1并且产生一个计数器溢出事件;然后再从0开始重新计数。

2.3    编程步骤

1.       配置系统时钟;

2.       配置NVIC;

3.       配置GPIO;

4.       配置TIMER;

其中,前3项在前面的笔记中已经给出,在此就不再赘述了。第4项配置TIMER有如下配置:

(1)       利用TIM_DeInit()函数将Timer设置为默认缺省值;

(2)       TIM_InternalClockConfig()选择TIMx来设置内部时钟源;

(3)       TIM_Perscaler来设置预分频系数;

(4)       TIM_ClockDivision来设置时钟分割;

(5)       TIM_CounterMode来设置计数器模式;

(6)       TIM_Period来设置自动装入的值

(7)       TIM_ARRPerloadConfig()来设置是否使用预装载缓冲器

(8)       TIM_ITConfig()来开启TIMx的中断

其中(3)-(6)步骤中的参数由TIM_TimerBaseInitTypeDef结构体给出。步骤(3)中的预分频系数用来确定TIMx所使用的时钟频率,具体计算方法为:CK_INT/(TIM_Perscaler+1)。CK_INT是内部时钟源的频率,是根据2.1中所描述的APB1的倍频器送出的时钟,TIM_Perscaler是用户设定的预分频系数,其值范围是从0 – 65535。

步骤(4)中的时钟分割定义的是在定时器时钟频率(CK_INT)与数字滤波器(ETR,TIx)使用的采样频率之间的分频比例。TIM_ClockDivision的参数如下表:

TIM_ClockDivision

描述

二进制值

TIM_CKD_DIV1

tDTS = Tck_tim

0x00

TIM_CKD_DIV2

tDTS = 2 * Tck_tim

0x01

TIM_CKD_DIV4

tDTS = 4 * Tck_tim

0x10

数字滤波器(ETR,TIx)是为了将ETR进来的分频后的信号滤波,保证通过信号频率不超过某个限定。

步骤(7)中需要禁止使用预装载缓冲器。当预装载缓冲器被禁止时,写入自动装入的值(TIMx_ARR)的数值会直接传送到对应的影子寄存器;如果使能预加载寄存器,则写入ARR的数值会在更新事件时,才会从预加载寄存器传送到对应的影子寄存器。

ARM中,有的逻辑寄存器在物理上对应2个寄存器,一个是程序员可以写入或读出的寄存器,称为preload register(预装载寄存器),另一个是程序员看不见的、但在操作中真正起作用的寄存器,称为shadow register(影子寄存器);设计preload register和shadow register的好处是,所有真正需要起作用的寄存器(shadow register)可以在同一个时间(发生更新事件时)被更新为所对应的preload register的内容,这样可以保证多个通道的操作能够准确地同步。如果没有shadow register,或者preload register和shadow register是直通的,即软件更新preload register时,同时更新了shadow register,因为软件不可能在一个相同的时刻同时更新多个寄存器,结果造成多个通道的时序不能同步,如果再加上其它因素(例如中断),多个通道的时序关系有可能是不可预知的。

3.     程序源代码

本例实现的是通过TIM2的定时功能,使得LED灯按照1s的时间间隔来闪烁

#include "stm32f10x_lib.h"

void RCC_cfg();

void TIMER_cfg();

void NVIC_cfg();

void GPIO_cfg();

int main()

{

RCC_cfg();

NVIC_cfg();

GPIO_cfg();

TIMER_cfg();

//开启定时器2

TIM_Cmd(TIM2,ENABLE);

while(1);

}

void RCC_cfg()

{

//定义错误状态变量

ErrorStatus HSEStartUpStatus;

//将RCC寄存器重新设置为默认值

RCC_DeInit();

//打开外部高速时钟晶振

RCC_HSEConfig(RCC_HSE_ON);

//等待外部高速时钟晶振工作

HSEStartUpStatus = RCC_WaitForHSEStartUp();

if(HSEStartUpStatus == SUCCESS)

{

//设置AHB时钟(HCLK)为系统时钟

RCC_HCLKConfig(RCC_SYSCLK_Div1);

//设置高速AHB时钟(APB2)为HCLK时钟

RCC_PCLK2Config(RCC_HCLK_Div1);

//设置低速AHB时钟(APB1)为HCLK的2分频

RCC_PCLK1Config(RCC_HCLK_Div2);

//设置FLASH代码延时

FLASH_SetLatency(FLASH_Latency_2);

//使能预取指缓存

FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);

//设置PLL时钟,为HSE的9倍频 8MHz * 9 = 72MHz

RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);

//使能PLL

RCC_PLLCmd(ENABLE);

//等待PLL准备就绪

while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);

//设置PLL为系统时钟源

RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

//判断PLL是否是系统时钟

while(RCC_GetSYSCLKSource() != 0x08);

}

//允许TIM2的时钟

RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);

//允许GPIO的时钟

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);

}

void TIMER_cfg()

{

TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

//重新将Timer设置为缺省值

TIM_DeInit(TIM2);

//采用内部时钟给TIM2提供时钟源

TIM_InternalClockConfig(TIM2);

//预分频系数为36000-1,这样计数器时钟为72MHz/36000 = 2kHz

TIM_TimeBaseStructure.TIM_Prescaler = 36000 - 1;

//设置时钟分割

TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;

//设置计数器模式为向上计数模式

TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

//设置计数溢出大小,每计2000个数就产生一个更新事件

TIM_TimeBaseStructure.TIM_Period = 2000 - 1;

//将配置应用到TIM2中

TIM_TimeBaseInit(TIM2,&TIM_TimeBaseStructure);

//清除溢出中断标志

TIM_ClearFlag(TIM2, TIM_FLAG_Update);

//禁止ARR预装载缓冲器

TIM_ARRPreloadConfig(TIM2, DISABLE);

//开启TIM2的中断

TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE);

}

void NVIC_cfg()

{

NVIC_InitTypeDef NVIC_InitStructure;

//选择中断分组1

NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);

//选择TIM2的中断通道

NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQChannel;

//抢占式中断优先级设置为0

NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;

//响应式中断优先级设置为0

NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;

//使能中断

NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

NVIC_Init(&NVIC_InitStructure);

}

void GPIO_cfg()

{

GPIO_InitTypeDef GPIO_InitStructure;

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;                 //选择引脚5

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //输出频率最大50MHz

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //带上拉电阻输出

GPIO_Init(GPIOB,&GPIO_InitStructure);

}

在stm32f10x_it.c中,我们找到函数TIM2_IRQHandler(),并向其中添加代码

void TIM2_IRQHandler(void)

{

u8 ReadValue;

//检测是否发生溢出更新事件

if(TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET)

{

//清除TIM2的中断待处理位

TIM_ClearITPendingBit(TIM2 , TIM_FLAG_Update);

//将PB.5管脚输出数值写入ReadValue

ReadValue = GPIO_ReadOutputDataBit(GPIOB,GPIO_Pin_5);

if(ReadValue == 0)

{

GPIO_SetBits(GPIOB,GPIO_Pin_5);

}

else

{

GPIO_ResetBits(GPIOB,GPIO_Pin_5);

}

}

}

STM32——timer的更多相关文章

  1. STM32 Timer Clock sources -- External Clock Both Edge

    Timers get their clock source from External pins or Internal timer sources. External External = pins ...

  2. STM32 Timer : Base Timer, Input Capture, PWM, Output Compare

    http://www.cs.indiana.edu/~geobrown/book.pdf An example of a basic timer is illustrated in Figure 10 ...

  3. STM32: TIMER门控模式控制PWM输出长度

    搞了两天单脉冲没搞定,无意中发现,这个利用主从模式的门控方式来控制一路PWM的输出长度很有效. //TIM2 PWM输出,由TIM4来控制其输出与停止 //frequency_tim2:TIM2 PW ...

  4. STM32 TIMER OUTPUT DIAGRAM

  5. STM32 TIMER DIAGRAM

  6. STM32 TIMER REGISTER

  7. STM32 Timer : Auto-reload register register

    Auto-reload register (TIMx_ARR) The auto-reload register is preloaded. Writing to or reading from th ...

  8. STM32:TIMER PWM 输入检测

    PWM输入检测是输入捕获的一个特例,可以测量频率与占空比 与输入捕获不同的是PWM输入模式会将同一个输入信号(TI1或TI2)连接到两个捕获装置(IC1和IC2).这两个捕获装置一个捕获上升沿一个捕获 ...

  9. Stm32高级定时器(四)

    Stm32高级定时器(四) 1 编码器接口模式 1.1 编码器原理 什么是正交?如果两个信号相位相差90度,则这两个信号称为正交.由于两个信号相差90度,因此可以根据两个信号哪个先哪个后来判断方向.根 ...

随机推荐

  1. 5 分钟上手 ECharts

    获取 ECharts 你可以通过以下几种方式获取 ECharts. 从官网下载界面选择你需要的版本下载,根据开发者功能和体积上的需求,我们提供了不同打包的下载,如果你在体积上没有要求,可以直接下载完整 ...

  2. How Tomcat Works(二)

    我们这些可怜虫,只有沿着大神的思路,这样我们才能进步得更快:因为我们不是跟大神处于同一级别上.所以我这里是参考<How Tomcat Works>这本英文版的大作来理解tomcat的工作原 ...

  3. 转:STL使用入门( Using STL)

    1 介绍 我最开始结束C++编程是从DOS下的Borland C++开始的.那时他们在最新版本3.1中就包含了一套模板库用来做collection.那真是个好东东.当我开始使用Visual C++ 2 ...

  4. 博客搬到CSDN了,以后就老实的呆在这儿吧~~

    几年前读书的时候就自己在做独立的个人博客网站,重做 + 改版好多次,域名也换了好几个- 163fly.com.godbz.com.zhouz.me ... 都是我曾经用过的域名,都放弃了- 发现到头来 ...

  5. myeclipse 扩展内存大小

    工具中修改设置Default VM ArgumentsWindows-> Preferences->Java->Installed JREs,点击右侧的jdk,然后点击"E ...

  6. python产生随机值-random模块

    import random产生随机值的模块random.random() #获取一个随机的浮点值;help(random.random) #查看随机范围:0-1;random.uniform(1,10 ...

  7. Initialize the shader 初始化着色器

    目录 Loads the shader files and makes it usable to DirectX and the GPU 加载着色器文件并使其可用于DirectX和GPU Compil ...

  8. 教你快速撸一个免费HTTPS证书

    摘要: 免费 HTTPS 证书,了解一下? HTTPS 已成为业界标准,这篇博客将教你申请Let's Encrypt的免费 HTTPS 证书. 本文的操作是在 Ubuntu 16.04 下进行,使用 ...

  9. Yesterday when I was young

    Somehow, it seems the love I knew was always the most destructive kind 不知为何,我经历的爱情总是最具毁灭性的的那种 Yester ...

  10. Maven 学习总结 (四)之 测试

    使用Maven测试 Maven的重要职责之一就是自动运行单元测试.它通过maven-surefire-plugin与主流的单元测试框架JUnit3.JUnit4以及TestNG集成,并且能够自动生成丰 ...