作为一个大三的预备程序员,我学习android的一大乐趣是可以通过源码学习google大牛们的设计思想。android源码中包含了大量的设计模式,除此以外,android sdk还精心为我们设计了各种helper类,对于和我一样渴望水平得到进阶的人来说,都太值得一读了。这不,前几天为了了解android的消息处理机制,我看了Looper,Handler,Message这几个类的源码,结果又一次被googler的设计震撼了,特与大家分享。

android的消息处理有三个核心类:Looper,Handler和Message。其实还有一个Message Queue(消息队列),但是MQ被封装到Looper里面了,我们不会直接与MQ打交道,因此我没将其作为核心类。下面一一介绍:

线程的魔法师 Looper

Looper的字面意思是“循环者”,它被设计用来使一个普通线程变成Looper线程。所谓Looper线程就是循环工作的线程。在程序开发中(尤其是GUI开发中),我们经常会需要一个线程不断循环,一旦有新任务则执行,执行完继续等待下一个任务,这就是Looper线程。使用Looper类创建Looper线程很简单:

public class LooperThread extends Thread {
@Override
public void run() {
// 将当前线程初始化为Looper线程
Looper.prepare(); // ...其他处理,如实例化handler // 开始循环处理消息队列
Looper.loop();
}
}

通过上面两行核心代码,你的线程就升级为Looper线程了!!!是不是很神奇?让我们放慢镜头,看看这两行代码各自做了什么。

1)Looper.prepare()

通过上图可以看到,现在你的线程中有一个Looper对象,它的内部维护了一个消息队列MQ。注意,一个Thread只能有一个Looper对象,为什么呢?咱们来看源码。

public class Looper {
// 每个线程中的Looper对象其实是一个ThreadLocal,即线程本地存储(TLS)对象
private static final ThreadLocal sThreadLocal = new ThreadLocal();
// Looper内的消息队列
final MessageQueue mQueue;
// 当前线程
Thread mThread;
// 。。。其他属性 // 每个Looper对象中有它的消息队列,和它所属的线程
private Looper() {
mQueue = new MessageQueue();
mRun = true;
mThread = Thread.currentThread();
} // 我们调用该方法会在调用线程的TLS中创建Looper对象
public static final void prepare() {
if (sThreadLocal.get() != null) {
// 试图在有Looper的线程中再次创建Looper将抛出异常
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper());
}
// 其他方法
}

通过源码,prepare()背后的工作方式一目了然,其核心就是将looper对象定义为ThreadLocal。如果你还不清楚什么是ThreadLocal,请参考《理解ThreadLocal》

2)Looper.loop()

调用loop方法后,Looper线程就开始真正工作了,它不断从自己的MQ中取出队头的消息(也叫任务)执行。其源码分析如下:

  public static final void loop() {
Looper me = myLooper(); //得到当前线程Looper
MessageQueue queue = me.mQueue; //得到当前looper的MQ // 这两行没看懂= = 不过不影响理解
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
// 开始循环
while (true) {
Message msg = queue.next(); // 取出message
if (msg != null) {
if (msg.target == null) {
// message没有target为结束信号,退出循环
return;
}
// 日志。。。
if (me.mLogging!= null) me.mLogging.println(
">>>>> Dispatching to " + msg.target + " "
+ msg.callback + ": " + msg.what
);
// 非常重要!将真正的处理工作交给message的target,即后面要讲的handler
msg.target.dispatchMessage(msg);
// 还是日志。。。
if (me.mLogging!= null) me.mLogging.println(
"<<<<< Finished to " + msg.target + " "
+ msg.callback); // 下面没看懂,同样不影响理解
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf("Looper", "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
// 回收message资源
msg.recycle();
}
}
}

除了prepare()和loop()方法,Looper类还提供了一些有用的方法,比如

Looper.myLooper()得到当前线程looper对象:

    public static final Looper myLooper() {
// 在任意线程调用Looper.myLooper()返回的都是那个线程的looper
return (Looper)sThreadLocal.get();
}

getThread()得到looper对象所属线程:

    public Thread getThread() {
return mThread;
}

quit()方法结束looper循环:

    public void quit() {
// 创建一个空的message,它的target为NULL,表示结束循环消息
Message msg = Message.obtain();
// 发出消息
mQueue.enqueueMessage(msg, 0);
}

到此为止,你应该对Looper有了基本的了解,总结几点:

1.每个线程有且最多只能有一个Looper对象,它是一个ThreadLocal

2.Looper内部有一个消息队列,loop()方法调用后线程开始不断从队列中取出消息执行

3.Looper使一个线程变成Looper线程。

那么,我们如何往MQ上添加消息呢?下面有请Handler!(掌声~~~)

异步处理大师 Handler

什么是handler?handler扮演了往MQ上添加消息和处理消息的角色(只处理由自己发出的消息),即通知MQ它要执行一个任务(sendMessage),并在loop到自己的时候执行该任务(handleMessage),整个过程是异步的。handler创建时会关联一个looper,默认的构造方法将关联当前线程的looper,不过这也是可以set的。默认的构造方法:

public class handler {

    final MessageQueue mQueue;  // 关联的MQ
final Looper mLooper; // 关联的looper
final Callback mCallback;
// 其他属性 public Handler() {
// 没看懂,直接略过,,,
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
// 默认将关联当前线程的looper
mLooper = Looper.myLooper();
// looper不能为空,即该默认的构造方法只能在looper线程中使用
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
// 重要!!!直接把关联looper的MQ作为自己的MQ,因此它的消息将发送到关联looper的MQ上
mQueue = mLooper.mQueue;
mCallback = null;
} // 其他方法
}

下面我们就可以为之前的LooperThread类加入Handler:

public class LooperThread extends Thread {
private Handler handler1;
private Handler handler2; @Override
public void run() {
// 将当前线程初始化为Looper线程
Looper.prepare(); // 实例化两个handler
handler1 = new Handler();
handler2 = new Handler(); // 开始循环处理消息队列
Looper.loop();
}
}

加入handler后的效果如下图:

可以看到,一个线程可以有多个Handler,但是只能有一个Looper!

Handler发送消息

有了handler之后,我们就可以使用 post(Runnable), postAtTime(Runnable, long), postDelayed(Runnable, long), sendEmptyMessage(int), sendMessage(Message), sendMessageAtTime(Message, long)sendMessageDelayed(Message, long)这些方法向MQ上发送消息了。光看这些API你可能会觉得handler能发两种消息,一种是Runnable对象,一种是message对象,这是直观的理解,但其实post发出的Runnable对象最后都被封装成message对象了,见源码:

    // 此方法用于向关联的MQ上发送Runnable对象,它的run方法将在handler关联的looper线程中执行
public final boolean post(Runnable r)
{
// 注意getPostMessage(r)将runnable封装成message
return sendMessageDelayed(getPostMessage(r), 0);
} private final Message getPostMessage(Runnable r) {
Message m = Message.obtain(); //得到空的message
m.callback = r; //将runnable设为message的callback,
return m;
} public boolean sendMessageAtTime(Message msg, long uptimeMillis)
{
boolean sent = false;
MessageQueue queue = mQueue;
if (queue != null) {
msg.target = this; // message的target必须设为该handler!
sent = queue.enqueueMessage(msg, uptimeMillis);
}
else {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
}
return sent;
}

其他方法就不罗列了,总之通过handler发出的message有如下特点:

1.message.target为该handler对象,这确保了looper执行到该message时能找到处理它的handler,即loop()方法中的关键代码

msg.target.dispatchMessage(msg);

2.post发出的message,其callback为Runnable对象

Handler处理消息

说完了消息的发送,再来看下handler如何处理消息。消息的处理是通过核心方法dispatchMessage(Message msg)与钩子方法handleMessage(Message msg)完成的,见源码

    // 处理消息,该方法由looper调用
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
// 如果message设置了callback,即runnable消息,处理callback!
handleCallback(msg);
} else {
// 如果handler本身设置了callback,则执行callback
if (mCallback != null) {
/* 这种方法允许让activity等来实现Handler.Callback接口,避免了自己编写handler重写handleMessage方法。见http://alex-yang-xiansoftware-com.iteye.com/blog/850865 */
if (mCallback.handleMessage(msg)) {
return;
}
}
// 如果message没有callback,则调用handler的钩子方法handleMessage
handleMessage(msg);
}
} // 处理runnable消息
private final void handleCallback(Message message) {
message.callback.run(); //直接调用run方法!
}
// 由子类实现的钩子方法
public void handleMessage(Message msg) {
}

可以看到,除了handleMessage(Message msg)和Runnable对象的run方法由开发者实现外(实现具体逻辑),handler的内部工作机制对开发者是透明的。这正是handler API设计的精妙之处!

Handler的用处

我在小标题中将handler描述为“异步处理大师”,这归功于Handler拥有下面两个重要的特点:

1.handler可以在任意线程发送消息,这些消息会被添加到关联的MQ上。

2.handler是在它关联的looper线程中处理消息的。

这就解决了android最经典的不能在其他非主线程中更新UI的问题。android的主线程也是一个looper线程(looper在android中运用很广),我们在其中创建的handler默认将关联主线程MQ。因此,利用handler的一个solution就是在activity中创建handler并将其引用传递给worker thread,worker thread执行完任务后使用handler发送消息通知activity更新UI。(过程如图)

下面给出sample代码,仅供参考:

public class TestDriverActivity extends Activity {
private TextView textview; @Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
textview = (TextView) findViewById(R.id.textview);
// 创建并启动工作线程
Thread workerThread = new Thread(new SampleTask(new MyHandler()));
workerThread.start();
} public void appendText(String msg) {
textview.setText(textview.getText() + "\n" + msg);
} class MyHandler extends Handler {
@Override
public void handleMessage(Message msg) {
String result = msg.getData().getString("message");
// 更新UI
appendText(result);
}
}
}
public class SampleTask implements Runnable {
private static final String TAG = SampleTask.class.getSimpleName();
Handler handler; public SampleTask(Handler handler) {
super();
this.handler = handler;
} @Override
public void run() {
try { // 模拟执行某项任务,下载等
Thread.sleep(5000);
// 任务完成后通知activity更新UI
Message msg = prepareMessage("task completed!");
// message将被添加到主线程的MQ中
handler.sendMessage(msg);
} catch (InterruptedException e) {
Log.d(TAG, "interrupted!");
} } private Message prepareMessage(String str) {
Message result = handler.obtainMessage();
Bundle data = new Bundle();
data.putString("message", str);
result.setData(data);
return result;
} }

当然,handler能做的远远不仅如此,由于它能post Runnable对象,它还能与Looper配合实现经典的Pipeline Thread(流水线线程)模式。请参考此文《Android Guts: Intro to Loopers and Handlers》

封装任务 Message

在整个消息处理机制中,message又叫task,封装了任务携带的信息和处理该任务的handler。message的用法比较简单,这里不做总结了。但是有这么几点需要注意(待补充):

1.尽管Message有public的默认构造方法,但是你应该通过Message.obtain()来从消息池中获得空消息对象,以节省资源。

2.如果你的message只需要携带简单的int信息,请优先使用Message.arg1和Message.arg2来传递信息,这比用Bundle更省内存

3.擅用message.what来标识信息,以便用不同方式处理message。

(完) PS:写了好久啊,觉得还不错的话给个推荐哦亲

转 Android的消息处理机制(图+源码分析)——Looper,Handler,Message的更多相关文章

  1. android的消息处理机制(图文+源码分析)—Looper/Handler/Message[转]

    from:http://www.jb51.net/article/33514.htm 作为一个大三的预备程序员,我学习android的一大乐趣是可以通过源码学习google大牛们的设计思想.andro ...

  2. Android Handler处理机制 ( 一 )(图+源码分析)——Handler,Message,Looper,MessageQueue

    android的消息处理机制(图+源码分析)——Looper,Handler,Message 作为一个大三的预备程序员,我学习android的一大乐趣是可以通过源码学习 google大牛们的设计思想. ...

  3. Android -- 消息处理机制源码分析(Looper,Handler,Message)

    android的消息处理有三个核心类:Looper,Handler和Message.其实还有一个Message Queue(消息队列),但是MQ被封装到Looper里面了,我们不会直接与MQ打交道,因 ...

  4. Android中Handler的消息处理机制以及源码分析

    在实际项目当中,一个很常见的需求场景就是在根据子线程当中的数据去更新ui.我们知道,android中ui是单线程模型的,就是只能在UI线程(也称为主线程)中更新ui.而一些耗时操作,比如数据库,网络请 ...

  5. 【转】android的消息处理机制(图+源码分析)——Looper,Handler,Message

    原文地址:http://www.cnblogs.com/codingmyworld/archive/2011/09/12/2174255.html#!comments 作为一个大三的预备程序员,我学习 ...

  6. android的消息处理机制(图+源码分析)——Looper,Handler,Message

    android源码中包含了大量的设计模式,除此以外,android sdk还精心为我们设计了各种helper类,对于和我一样渴望水平得到进阶的人来说,都太值得一读了.这不,前几天为了了解android ...

  7. Android源码分析笔记--Handler机制

    #Handler机制# Handler机制实际就是实现一个 异步消息循环处理器 Handler的真正意义: 异步处理 Handler机制的整体表述: 消息处理线程: 在Handler机制中,异步消息处 ...

  8. Android 异步消息处理机制终结篇 :深入理解 Looper、Handler、Message、MessageQueue四者关系

    版权声明:本文出自汪磊的博客,转载请务必注明出处. 一.概述 我们知道更新UI操作我们需要在UI线程中操作,如果在子线程中更新UI会发生异常可能导致崩溃,但是在UI线程中进行耗时操作又会导致ANR,这 ...

  9. Guava cacha 机制及源码分析

    1.ehcahce 什么时候用比较好:2.问题:当有个消息的key不在guava里面的话,如果大量的消息过来,会同时请求数据库吗?还是只有一个请求数据库,其他的等待第一个把数据从DB加载到Guava中 ...

随机推荐

  1. Android 使用代码主动去调用控件的点击事件(模拟人手去触摸控件)

    使用代码主动去调用控件的点击事件(模拟人手去触摸控件) //View 可以是LinearLayout,Button,TextView View.performClick();

  2. log4j的基本使用和参数设定

    1.简介 apache的一个开放源代码项目. 精确控制日志的输出,包括输出的格式,输出的目的地,输出的过滤(不同级别日志的输出)等. 配置简单,不需要在代码中配置环境,支持两种配置文件格式,XML和J ...

  3. 张高兴的 Windows 10 IoT 开发笔记:ToF Sensor VL53L0X

    GitHub : https://github.com/ZhangGaoxing/windows-iot-demo/tree/master/VL53L0X

  4. vue+Element实现静态旅游网站

    页面效果: 1.用vue脚手架:vue-cli,新建一个vue项目. 2.npm run dev后,给小颖了一句提示:Your application is running here:http://l ...

  5. Hibernate之实体关系映射

    延迟加载与即时加载 例如Person类和Email类是一对多关系,如果设为即时加载,当加载Person时,会自动加载Email,如果设置为延迟加载,当第一次调用person.getEmails()时才 ...

  6. BZOJ3435[Wc2014]紫荆花之恋——动态点分治(替罪羊式点分树套替罪羊树)

    题目描述 强强和萌萌是一对好朋友.有一天他们在外面闲逛,突然看到前方有一棵紫荆树.这已经是紫荆花飞舞的季节了,无数的花瓣以肉眼可见的速度从紫荆树上长了出来.仔细看看的话,这个大树实际上是一个带权树.每 ...

  7. vue-列表嵌套

  8. 附加任务:团队作业7 Alpha冲刺

    附加任务:团队作业7 Alpha冲刺 附加任务要求参考东北师范大学陈志勇老师博客:https://edu.cnblogs.com/campus/nenu/2016SE_NENU/homework/19 ...

  9. 10.22JS日记

    1.js数据类型分析 (1)基础类型:string.number.boolean.null.undefined (2)引用类型:object-->json.array... 2.点运算  xxx ...

  10. Day12-navicat for sqlite 11.1.12 patch 永久使用版

    参考来源:http://www.cnblogs.com/yueyue184/p/6407963.html 深深感谢!!! 因为最近需要用这个但是网上都是注册机没有成功注册,所以就自己动手使用ollyd ...