转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/

Vision_layer里面主要是包括了一些关于一些视觉上的操作,比如卷积、反卷积、池化等等。这里的类跟data layer一样好很多种继承关系。主要包括了这几个类,其中CuDNN分别是CUDA版本,这里先不讨论,在这里先讨论ConvolutionLayer

  • BaseConvolutionLayer
  • ConvolutionLaye
  • DeconvolutionLayer
  • CuDNNConvolutionLayer
  • Im2colLayer
  • LRNLayer
  • CuDNNLRNLayer
  • CuDNNLCNLayer
  • PoolingLayer
  • CuDNNPoolingLayer
  • SPPLayer
    这里我画了一个类图,将关系梳理了一下:

BaseConvolutionLayer

其继承自Layer,是一个卷积以及反卷积操作的基类,首先我们来看BaseConvolutionLayer的LayerSetUp函数

void BaseConvolutionLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top)
  //首先这里主要是在配置卷积kernel 的size,padding,stride以及inputs
  ConvolutionParameter conv_param = this->layer_param_.convolution_param();
  force_nd_im2col_ = conv_param.force_nd_im2col();
  channel_axis_ = bottom[0]->CanonicalAxisIndex(conv_param.axis());
  const int first_spatial_axis = channel_axis_ + 1;
  const int num_axes = bottom[0]->num_axes();
  num_spatial_axes_ = num_axes - first_spatial_axis;
  CHECK_GE(num_spatial_axes_, 0);
  vector<int> bottom_dim_blob_shape(1, num_spatial_axes_ + 1);
  vector<int> spatial_dim_blob_shape(1, std::max(num_spatial_axes_, 1));
  // 设置kernel的dimensions
  kernel_shape_.Reshape(spatial_dim_blob_shape);
  int* kernel_shape_data = kernel_shape_.mutable_cpu_data();
  

接着是设置相应的stride dimensions,对于2D,设置在h和w方向上的stride,代码太长列出简要的

pad_.Reshape(spatial_dim_blob_shape);
int* pad_data = pad_.mutable_cpu_data();
pad_data[0] = conv_param.pad_h();
pad_data[1] = conv_param.pad_w();
......一堆if else判断

对于kernel的pad也做相应设置

pad_.Reshape(spatial_dim_blob_shape);
int* pad_data = pad_.mutable_cpu_data();
pad_data[0] = conv_param.pad_h();
pad_data[1] = conv_param.pad_w();

接下来是对widhts 和bias左设置和填充,其中blob[0]里面存放的是filter weights,而blob[1]里面存放的是biases,当然biases是可选的,也可以没有

//设置相应的shape,并检查
vector<int> weight_shape(2);
weight_shape[0] = conv_out_channels_;
weight_shape[1] = conv_in_channels_ / group_;

bias_term_ = this->layer_param_.convolution_param().bias_term();
vector<int> bias_shape(bias_term_, num_output_);

//填充权重
this->blobs_[0].reset(new Blob<Dtype>(weight_shape));
shared_ptr<Filler<Dtype> > weight_filler(GetFiller<Dtype>(
    this->layer_param_.convolution_param().weight_filler()));
weight_filler->Fill(this->blobs_[0].get());
//填充偏置项
if (bias_term_) {
  this->blobs_[1].reset(new Blob<Dtype>(bias_shape));
  shared_ptr<Filler<Dtype> > bias_filler(GetFiller<Dtype>(
      this->layer_param_.convolution_param().bias_filler()));
  bias_filler->Fill(this->blobs_[1].get());
}

ConvolutionLayer

ConvolutionLayer继承了BaseConvolutionLayer,主要作用就是将一副image做卷积操作,使用学到的filter的参数和biaes。同时在Caffe里面,卷积操作做了优化,变成了一个矩阵相乘的操作。其中有两个比较主要的函数是im2col以及col2im。
图中上半部分是一个传统卷积,下图是一个矩阵相乘的版本

下图是在一个卷积层中将卷积操作展开的具体操作过程,他里面按照卷积核的大小取数据然后展开,在同一张图里的不同卷积核选取的逐行摆放,不同N的话,就在同一行后面继续拼接,不同个可以是多个通道,但是需要注意的是同一行里面每一段都应该对应的是原图中中一个位置的卷积窗口。

对于卷积层中的卷积操作,还有一个group的概念要说明一下,groups是代表filter 组的个数。引入gruop主要是为了选择性的连接卷基层的输入端和输出端的channels,否则参数会太多。每一个group 和1/ group的input 通道和 1/group 的output通道进行卷积操作。比如有4个input, 8个output,那么1-4属于第一组,5-8属于第二个gruop

ConvolutionLayer里面,主要重写了Forward_cpu和Backward_cpu

void ConvolutionLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
  const Dtype* weight = this->blobs_[0]->cpu_data();
  for (int i = 0; i < bottom.size(); ++i) {
    const Dtype* bottom_data = bottom[i]->cpu_data();
    Dtype* top_data = top[i]->mutable_cpu_data();
    for (int n = 0; n < this->num_; ++n) {
      this->forward_cpu_gemm(bottom_data + n * this->bottom_dim_, weight,
          top_data + n * this->top_dim_);
      if (this->bias_term_) {
        const Dtype* bias = this->blobs_[1]->cpu_data();
        this->forward_cpu_bias(top_data + n * this->top_dim_, bias);
      }
    }
  }
}

可以看到其实这里面他调用了forward_cpu_gemm,而这个函数内部又调用了math_function里面的caffe_cpu_gemm的通用矩阵相乘接口,GEMM的全称是General Matrix Matrix Multiply。其基本形式如下:
\[C=alpha*op( A )*op( B ) + beta*C,\]

template <typename Dtype>
void ConvolutionLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
   //反向传播梯度误差
  const Dtype* weight = this->blobs_[0]->cpu_data();
  Dtype* weight_diff = this->blobs_[0]->mutable_cpu_diff();
  for (int i = 0; i < top.size(); ++i) {
    const Dtype* top_diff = top[i]->cpu_diff();
    const Dtype* bottom_data = bottom[i]->cpu_data();
    Dtype* bottom_diff = bottom[i]->mutable_cpu_diff();

    //如果有bias项,计算Bias导数
    if (this->bias_term_ && this->param_propagate_down_[1]) {
      Dtype* bias_diff = this->blobs_[1]->mutable_cpu_diff();
      for (int n = 0; n < this->num_; ++n) {
        this->backward_cpu_bias(bias_diff, top_diff + n * this->top_dim_);
      }
    }
    //计算weight
    if (this->param_propagate_down_[0] || propagate_down[i]) {
      for (int n = 0; n < this->num_; ++n) {
        // 计算weights权重的梯度
        if (this->param_propagate_down_[0]) {
          this->weight_cpu_gemm(bottom_data + n * this->bottom_dim_,
              top_diff + n * this->top_dim_, weight_diff);
        }
        //计算botttom数据的梯度,下后传递
        if (propagate_down[i]) {
          this->backward_cpu_gemm(top_diff + n * this->top_dim_, weight,
              bottom_diff + n * this->bottom_dim_);
        }
      }
    }
  }
}

Caffe源码解析5:Conv_Layer的更多相关文章

  1. Caffe源码解析7:Pooling_Layer

    转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ Pooling 层一般在网络中是跟在Conv卷积层之后,做采样 ...

  2. Caffe源码解析6:Neuron_Layer

    转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ NeuronLayer,顾名思义这里就是神经元,激活函数的相应 ...

  3. Caffe源码解析4: Data_layer

    转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ data_layer应该是网络的最底层,主要是将数据送给blo ...

  4. Caffe源码解析3:Layer

    转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ layer这个类可以说是里面最终的一个基本类了,深度网络呢就是 ...

  5. Caffe源码解析2:SycedMem

    转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang loves baiyan/ 看到SyncedMem就知道,这是在做内存同步的操作.这类个类的 ...

  6. Caffe源码解析1:Blob

    转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 首先看到的是Blob这个类,Blob是作为Caffe中数据流通的 ...

  7. caffe源码解析

    http://blog.csdn.net/lanxuecc/article/details/53186613

  8. 【原】Android热更新开源项目Tinker源码解析系列之三:so热更新

    本系列将从以下三个方面对Tinker进行源码解析: Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Android热更新开源项目Tinker源码解析系列之二:资源文件热更新 A ...

  9. 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新

    [原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...

随机推荐

  1. IEEE浮点标准

    原文地址:http://www.math.byu.edu/~schow/work/IEEEFloatingPoint.htm Floating point system Floating point ...

  2. CodeForces 589J Cleaner Robot

    题目链接 题意:一个机器人打扫卫生,URDL代表初始时机器人面对的方向上右下左. ' . ' 代表可以打扫的, ' * ' 代表家具,如果机器人遇到家具就顺时针转90度,问机器人能打扫多少面积. 题解 ...

  3. [POJ3111]K Best(分数规划, 二分)

    题目链接:http://poj.org/problem?id=3111 求选k对数,使得上述式子值最大.容易想到设左边为一个值,对式子变形以下,得到sigma(v-r*w))==0的时候就是最大的,& ...

  4. 一张图看懂单机/集群/热备/磁盘阵列(RAID)

  5. 使用Struts2搭建登录注册示例

    使用Struts2来搭建mvc网站框架还是比较容易的,Struts2提供了各项辅助功能,保证了web开发的快速方便.下面使用struts2来搭建一个登录注册示例. 0 项目结构截图 1 搭建Strut ...

  6. Bootstrap+angularjs+MVC3+分页技术+角色权限验证系统

    1.Bootstrap使用教程 相关教程: http://www.bootcss.com/components.html 页面使用代码: <script src="@Url.Conte ...

  7. 自动完成--autoComplete插件

    js下载地址:https://github.com/devbridge/jQuery-Autocomplete 1.引入js,引入css --start------------------------ ...

  8. 从下拉菜单拖拽一个元素 出来,插入到页面中的app 列表中

    1,实现功能:从下拉菜单拖拽一个元素 出来,插入到页面中的app 列表中 并实现app向后移动一个元素的位置: 2.实现思路: 01.遍历下拉菜单,添加拖拽方法,实现位置移动功能: 02.遍历app列 ...

  9. 标准C IO函数和 内核IO函数 效率(时间)比较

    前言 标准C提供的文件相关的IO函数,除标准错误输出是不带缓冲的(可以尽快的将错误消息显示出来)之外,所有与终端相关的都是行缓冲,其余都是全缓冲的. 我们可以使用setbuf,setvbuf改变指定流 ...

  10. JS Resizable Panel 练习

    Resizable Panel HTML <!doctype html> <html> <head> <title>Resizable Panel< ...