STM32的GPIO介绍

STM32引脚说明

GPIO是通用输入/输出端口的简称,是STM32可控制的引脚。GPIO的引脚与外部硬件设备连接,可实现与外部通讯、控制外部硬件或者采集外部硬件数据的功能。

STM32F103ZET6芯片为144脚芯片,包括7个通用目的的输入/输出口(GPIO)组,分别为GPIOA、GPIOB、GPIOC、GPIOD、GPIOE、GPIOF、GPIOG,同时每组GPIO口组有16个GPIO口。通常简略称为PAx、PBx、PCx、PDx、PEx、PFx、PGx,其中x为0-15。

STM32的大部分引脚除了当GPIO使用之外,还可以复用位外设功能引脚(比如串口),这部分在【STM32】STM32端口复用和重映射(AFIO辅助功能时钟) 中有详细的介绍。

GPIO基本结构

每个GPIO内部都有这样的一个电路结构,这个结构在本文下面会具体介绍。

这边的电路图稍微提一下:

保护二极管:IO引脚上下两边两个二极管用于防止引脚外部过高、过低的电压输入。当引脚电压高于VDD时,上方的二极管导通;当引脚电压低于VSS时,下方的二极管导通,防止不正常电压引入芯片导致芯片烧毁。但是尽管如此,还是不能直接外接大功率器件,须加大功率及隔离电路驱动,防止烧坏芯片或者外接器件无法正常工作。

P-MOS管和N-MOS管:由P-MOS管和N-MOS管组成的单元电路使得GPIO具有“推挽输出”和“开漏输出”的模式。这里的电路会在下面很详细地分析到。

TTL肖特基触发器:信号经过触发器后,模拟信号转化为0和1的数字信号。但是,当GPIO引脚作为ADC采集电压的输入通道时,用其“模拟输入”功能,此时信号不再经过触发器进行TTL电平转换。ADC外设要采集到的原始的模拟信号。

这里需要注意的是,在查看《STM32中文参考手册V10》中的GPIO的表格时,会看到有“FT”一列,这代表着这个GPIO口时兼容3.3V和5V的;如果没有标注“FT”,就代表着不兼容5V。

STM32的GPIO工作方式

GPIO支持4种输入模式(浮空输入、上拉输入、下拉输入、模拟输入)和4种输出模式(开漏输出、开漏复用输出、推挽输出、推挽复用输出)。同时,GPIO还支持三种最大翻转速度(2MHz、10MHz、50MHz)。

每个I/O口可以自由编程,但I/O口寄存器必须按32位字被访问。

GPIO_Mode_AIN 模拟输入

GPIO_Mode_IN_FLOATING 浮空输入

GPIO_Mode_IPD 下拉输入

GPIO_Mode_IPU 上拉输入

GPIO_Mode_Out_OD 开漏输出

GPIO_Mode_Out_PP 推挽输出

GPIO_Mode_AF_OD 复用开漏输出

GPIO_Mode_AF_PP 复用推挽输出

下面将具体介绍GPIO的这八种工作方式:

浮空输入模式

浮空输入模式下,I/O端口的电平信号直接进入输入数据寄存器。也就是说,I/O的电平状态是不确定的,完全由外部输入决定;如果在该引脚悬空(在无信号输入)的情况下,读取该端口的电平是不确定的。

上拉输入模式

上拉输入模式下,I/O端口的电平信号直接进入输入数据寄存器。但是在I/O端口悬空(在无信号输入)的情况下,输入端的电平可以保持在高电平;并且在I/O端口输入为低电平的时候,输入端的电平也还是低电平。

下拉输入模式

下拉输入模式下,I/O端口的电平信号直接进入输入数据寄存器。但是在I/O端口悬空(在无信号输入)的情况下,输入端的电平可以保持在低电平;并且在I/O端口输入为高电平的时候,输入端的电平也还是高电平。

模拟输入模式

模拟输入模式下,I/O端口的模拟信号(电压信号,而非电平信号)直接模拟输入到片上外设模块,比如ADC模块等等。

开漏输出模式

开漏输出模式下,通过设置位设置/清除寄存器或者输出数据寄存器的值,途经N-MOS管,最终输出到I/O端口。这里要注意N-MOS管,当设置输出的值为高电平的时候,N-MOS管处于关闭状态,此时I/O端口的电平就不会由输出的高低电平决定,而是由I/O端口外部的上拉或者下拉决定;当设置输出的值为低电平的时候,N-MOS管处于开启状态,此时I/O端口的电平就是低电平。同时,I/O端口的电平也可以通过输入电路进行读取;注意,I/O端口的电平不一定是输出的电平。

开漏复用输出模式

开漏复用输出模式,与开漏输出模式很是类似。只是输出的高低电平的来源,不是让CPU直接写输出数据寄存器,取而代之利用片上外设模块的复用功能输出来决定的。

推挽输出模式

推挽输出模式下,通过设置位设置/清除寄存器或者输出数据寄存器的值,途经P-MOS管和N-MOS管,最终输出到I/O端口。这里要注意P-MOS管和N-MOS管,当设置输出的值为高电平的时候,P-MOS管处于开启状态,N-MOS管处于关闭状态,此时I/O端口的电平就由P-MOS管决定:高电平;当设置输出的值为低电平的时候,P-MOS管处于关闭状态,N-MOS管处于开启状态,此时I/O端口的电平就由N-MOS管决定:低电平。同时,I/O端口的电平也可以通过输入电路进行读取;注意,此时I/O端口的电平一定是输出的电平。

推挽复用输出模式

推挽复用输出模式,与推挽输出模式很是类似。只是输出的高低电平的来源,不是让CPU直接写输出数据寄存器,取而代之利用片上外设模块的复用功能输出来决定的。

总结与分析

1、什么是推挽结构和推挽电路?

推挽结构一般是指两个参数相同的三极管或MOS管分别受两互补信号的控制,总是在一个三极管或MOS管导通的时候另一个截止。高低电平由输出电平决定。

推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务。电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度。

2、开漏输出和推挽输出的区别?

开漏输出:只可以输出强低电平,高电平得靠外部电阻拉高。输出端相当于三极管的集电极。适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内);

推挽输出:可以输出强高、低电平,连接数字器件。

关于推挽输出和开漏输出,最后用一幅最简单的图形来概括:

该图中左边的便是推挽输出模式,其中比较器输出高电平时下面的PNP三极管截止,而上面NPN三极管导通,输出电平VS+;当比较器输出低电平时则恰恰相反,PNP三极管导通,输出和地相连,为低电平。右边的则可以理解为开漏输出形式,需要接上拉。

3、在STM32中选用怎样选择I/O模式?

浮空输入_IN_FLOATING ——浮空输入,可以做KEY识别,RX1

带上拉输入_IPU——IO内部上拉电阻输入

带下拉输入_IPD—— IO内部下拉电阻输入

模拟输入_AIN ——应用ADC模拟输入,或者低功耗下省电

开漏输出_OUT_OD ——IO输出0接GND,IO输出1,悬空,需要外接上拉电阻,才能实现输出高电平。当输出为1时,IO口的状态由上拉电阻拉高电平,但由于是开漏输出模式,这样IO口也就可以由外部电路改变为低电平或不变。可以读IO输入电平变化,实现C51的IO双向功能

推挽输出_OUT_PP ——IO输出0-接GND, IO输出1 -接VCC,读输入值是未知的

复用功能的推挽输出_AF_PP ——片内外设功能(I2C的SCL、SDA)

复用功能的开漏输出_AF_OD——片内外设功能(TX1、MOSI、MISO.SCK.SS)

STM32的GPIO工作原理 | 附电路图详细分析的更多相关文章

  1. springmvc工作原理以及源码分析(基于spring3.1.0)

    springmvc是一个基于spring的web框架.本篇文章对它的工作原理以及源码进行深入分析. 一.springmvc请求处理流程 二.springmvc的工作机制 三.springmvc核心源码 ...

  2. 磁盘工作原理与IO性能分析

    最近,在研究如何优化产品设备的磁盘IO性能,需要深入研究磁盘及文件系统原理和工作机制,下面简要总结下关于磁盘方面的东西,下篇文章再分享文件系统的. 机械磁盘结构: 无论哪种机械硬盘,都主要由盘片.磁头 ...

  3. Java并发包中Semaphore的工作原理、源码分析及使用示例

    1. 信号量Semaphore的介绍 我们以一个停车场运作为例来说明信号量的作用.假设停车场只有三个车位,一开始三个车位都是空的.这时如果同时来了三辆车,看门人允许其中它们进入进入,然后放下车拦.以后 ...

  4. 详解SpringMVC中Controller的方法中参数的工作原理[附带源码分析]

    目录 前言 现象 源码分析 HandlerMethodArgumentResolver与HandlerMethodReturnValueHandler接口介绍 HandlerMethodArgumen ...

  5. 【MVC - 参数原理】详解SpringMVC中Controller的方法中参数的工作原理[附带源码分析]

    前言 SpringMVC是目前主流的Web MVC框架之一. 如果有同学对它不熟悉,那么请参考它的入门blog:http://www.cnblogs.com/fangjian0423/p/spring ...

  6. Android系统Recovery工作原理之使用update.zip升级过程---updater-script脚本语法简介以及执行流程(转)

    目前update-script脚本格式是edify,其与amend有何区别,暂不讨论,我们只分析其中主要的语法,以及脚本的流程控制. 一.update-script脚本语法简介: 我们顺着所生成的脚本 ...

  7. Android系统Recovery工作原理之使用update.zip升级过程分析(九)---updater-script脚本语法简介以及执行流程【转】

    本文转载自:http://blog.csdn.net/mu0206mu/article/details/7465603       Android系统Recovery工作原理之使用update.zip ...

  8. PHP变量定义及工作原理

    1.变量定义: 通常学到的是,变量代表存储空间以及其中数据的一个“标识符”. 变量名 指向 变量值 更深入的说是 变量指向内存的一块区域 2.变量工作原理,通过画图分析法——内存空间 <?php ...

  9. How Javascript works (Javascript工作原理) (十五) 类和继承及 Babel 和 TypeScript 代码转换探秘

    个人总结:读完这篇文章需要15分钟,文章主要讲解了Babel和TypeScript的工作原理,(例如对es6 类的转换,是将原始es6代码转换为es5代码,这些代码中包含着类似于 _classCall ...

随机推荐

  1. grunt-笔记

    package.json: { "name": "grunt-uglify", "version": "1.0.0", ...

  2. angularJS——ng-bind指令与插值的区别

    在AngularJS中显示模型中的数据有两种方式: 一种是使用花括号插值的方式: <p>{{text}}</p> 另一种是使用基于属性的指令,叫做ng-bind: <p ...

  3. MySQL_订单类型细分_20161222

    #目前在做一个各城市日订单角度的对比分析,因此需要对订单类型进行一下规整.由于App上产品活动许多,查询了多个表,将订单类型规则进行了统一,优惠券和满减券不能同时使用,创建的这两个表都是以订单ID为k ...

  4. Android推送方案分析(MQTT/XMPP/GCM)

    本文主旨在于,对目前Android平台上最主流的几种消息推送方案进行分析和对比,比较客观地反映出这些推送方案的优缺点,帮助大家选择最合适的实施方案. 方案1. 使用GCM服务(Google Cloud ...

  5. JQuery multiselect的相关使用

    这两天做项目需要用到多选控件,于是选择了JQuery  multiselect控件,介绍一下常用的一些相关属性. 详细地址:http://davidstutz.github.io/bootstrap- ...

  6. 关键字 virtual

    Virtual是C++ OO机制中很重要的一个关键字.只要是学过C++的人都知道在类Base中加了Virtual关键字的函数就是虚拟函数(例如函数print),于是在Base的派生类Derived中就 ...

  7. 把DataTable 转换成Json格式,适用于EasyUI 绑定DataGrid

    本文转载:http://www.cnblogs.com/liang--liang/archive/2013/02/05/2893030.html public static string DataTa ...

  8. PSP个人软件开发工具

    (您的阅读是我的荣幸,如有不满之处请留言指正!) 尚未完善.....工作中 为开发人员提供一个PSP工具,简化时间记录工作:同时提供数据使用的工具,帮助开发人提高估算能力.   PSP个人软件开发工具 ...

  9. git 恢复丢失的文件-- 不提交入口文件

    务必进入当前controller下面,才能恢复 git checkout HEAD TestController.class.php 01备份index.php文件 02使用 小乌龟的git 删除 t ...

  10. Hive修改行级别数据

    我们知道Hive0.14版本之前是不支持行级别的插入,更新,删除的,0.14版本之后可以通过修改相关配置得以支持,但是在不修改默认配置的情况下是不是完全没有办法呢?不是的,这里有个比较简单的方法,前提 ...