原文地址:Linux内核源码分析--内核启动之(6)Image内核启动(do_basic_setup函数)(Linux-3.0 ARMv7) 作者:tekkamanninja

转自:http://blog.chinaunix.net/uid-25909619-id-4938396.html

    在基本分析完内核启动流程的之后,还有一个比较重要的初始化函数没有分析,那就是do_basic_setup。在内核init线程中调用了do_basic_setup,这个函数也做了很多内核和驱动的初始化工作,详解如下:

  1. /*
  2. * 好了, 设备现在已经初始化完成。 但是还没有一个设备被初始化过,
  3. * 但是 CPU 的子系统已经启动并运行,
  4. * 且内存和处理器管理系统已经在工作了。
  5. *
  6. * 现在我们终于可以开始做一些实际的工作了..
  7. */
  8. static void __init do_basic_setup(void)
  9. {
  10. cpuset_init_smp();

    点击(此处)折叠或打开

    1. 针对SMP系统,初始化内核control group的cpuset子系统。如果非SMP,此函数为空。
    2. cpuset是在用户空间中操作cgroup文件系统来执行进程与cpu和进程与内存结点之间的绑定。
    3. 本函数将cpus_allowed和mems_allwed更新为在线的cpu和在线的内存结点,并为内存热插拨注册了钩子函数,最后创建一个单线程工作队列cpuset。
  11. usermodehelper_init();

    点击(此处)折叠或打开

    1. 创建一个单线程工作队列khelper。运行的系统中只有一个,主要作用是指定用户空间的程序路径和环境变量, 最终运行指定的user space的程序,属于关键线程,不能关闭。
  12. init_tmpfs();

    点击(此处)折叠或打开

    1. 初始化内核tmpfs文件系统
  13.     driver_init();

    点击(此处)折叠或打开

    1. 初始化驱动模型中的各子系统,可见的现象是在/sys中出现的目录和文件
  14. init_irq_proc();

    点击(此处)折叠或打开

    1. 在proc文件系统中创建irq目录,并在其中初始化系统中所有中断对应的目录。
  15. do_ctors();

    点击(此处)折叠或打开

    1. 调用链接到内核中的所有构造函数,也就是链接进.ctors段中的所有函数。
    2. 在Linux-2.6.31开始内核启动增加了对构造函数的支持。
    3. git提交:

      点击(此处)折叠或打开

      1. commit b99b87f70c7785ab1e253c6220f4b0b57ce3a7f7
      2. Author: Peter Oberparleiter<oberpar@linux.vnet.ibm.com>
      3. Date: Wed Jun 17 16:28:03 2009 -0700
      4. kernel: constructor support
       内核:构造函数支持
      1. Call constructors (gcc-generated initcall-like functions) during kernel
      2. start and module load. Constructors are e.g. used for gcov data
      3. initialization.
      4. 在内核启动和模块挂载时,调用构造函数(gcc生成的类初始化函数)。构造函数就是
      5. 比如用于初始化gcov数据的函数
      6. Disable constructor support for usermode Linux to prevent conflicts with
      7. host glibc.
      8. 对于Linux的用户模式禁用构造函数支持,以避免和glibc冲突。
      9. Signed-off-by: Peter Oberparleiter<oberpar@linux.vnet.ibm.com>
      10. Acked-by: Rusty Russell<rusty@rustcorp.com.au>
      11. Acked-by: WANG Cong<xiyou.wangcong@gmail.com>
      12. Cc: Sam Ravnborg<sam@ravnborg.org>
      13. Cc: Jeff Dike<jdike@addtoit.com>
      14. Cc: Andi Kleen<andi@firstfloor.org>
      15. Cc: Huang Ying<ying.huang@intel.com>
      16. Cc: Li Wei<w.li@sun.com>
      17. Cc: Michael Ellerman<michaele@au1.ibm.com>
      18. Cc: Ingo Molnar<mingo@elte.hu>
      19. Cc: Heiko Carstens<heicars2@linux.vnet.ibm.com>
      20. Cc: Martin Schwidefsky<mschwid2@linux.vnet.ibm.com>
      21. Cc: Al Viro<viro@zeniv.linux.org.uk>
      22. Signed-off-by: Andrew Morton<akpm@linux-foundation.org>
      23. Signed-off-by: Linus Torvalds<torvalds@linux-foundation.org>
      $ git tag --contains b99b87f7
      v2.6.31
      v2.6.31-rc1
      v2.6.31-rc2
      v2.6.31-rc3
      v2.6.31-rc4
      v2.6.31-rc5
      v2.6.31-rc6
      v2.6.31-rc7
      v2.6.31-rc8
      v2.6.31-rc9
      v2.6.32
      v2.6.32-rc1
      v2.6.32-rc2
      v2.6.32-rc3
      v2.6.32-rc4
      v2.6.32-rc5
      v2.6.32-rc6
      v2.6.32-rc7
      v2.6.32-rc8
  16.     do_initcalls();

    点击(此处)折叠或打开

    1. 调用所有编译内核的驱动模块中的初始化函数。
    2. 这里就是驱动程序员需要关心的步骤,其中按照各个内核模块初始化函数所自定义的启动级别(1~7),按顺序调用器初始化函数。
    3. 对于同一级别的初始化函数,安装编译是链接的顺序调用,也就是和内核Makefile的编写有关。
      在编写内核模块的时候需要知道这方面的知识,比如你编写的模块使用的是I2C的API,那你的模块的初始化函数的级别必须低于I2C子系统初始化函数的级别(也就是级别数(1~7)要大于I2C子系统)。如果编写的模块必须和依赖的模块在同一级,那就必须注意内核Makefile的修改了。
      这方面的知识会在有空的时候总结下,网上也有相关的文章。
     
  17. }
上面的函数调用了driver_init函数,作用是驱动模型子系统的初始化,对于内核驱动工程师来说比较重要,详解如下:
drivers/base/init.c:

  1. /**
  2. * driver_init - 初始化驱动模型.
  3. *
  4. * 调用驱动模型初始化函数来初始化它们的子系统。
  5. * 由早期的init/main.c中调用。
  6. */
  7. void __init driver_init(void)
  8. {
  9. /* 它们为核心部件 */
  10. devtmpfs_init();

    点击(此处)折叠或打开

    1. 初始化devtmpfs文件系统,驱动核心设备将在这个文件系统中添加它们的设备节点。
    2. 这个文件系统可以由内核在挂载根文件系统之后自动挂载到/dev下,也可以在文件系统的启动脚本中手动挂载。
  11. devices_init();

    点击(此处)折叠或打开

    1. 初始化驱动模型中的部分子系统和kobject:
    2. devices
    3. dev
    4. dev/block
    5. dev/char
  12. buses_init();

    点击(此处)折叠或打开

    1. 初始化驱动模型中的bus子系统
  13. classes_init();

    点击(此处)折叠或打开

    1. 初始化驱动模型中的class子系统
  14. firmware_init();

    点击(此处)折叠或打开

    1. 初始化驱动模型中的firmware子系统
  15. hypervisor_init();

    点击(此处)折叠或打开

    1. 初始化驱动模型中的hypervisor子系统
  16. /* 这些也是核心部件, 但是必须
  17. * 在以上核心中的核心部件之后调用。
  18. */
  19. platform_bus_init();

    点击(此处)折叠或打开

    1. 初始化驱动模型中的bus/platform子系统
  20. system_bus_init();

    点击(此处)折叠或打开

    1. 初始化驱动模型中的devices/system子系统
  21. cpu_dev_init();

    点击(此处)折叠或打开

    1. 初始化驱动模型中的devices/system/cpu子系统
  22. memory_dev_init();

    点击(此处)折叠或打开

    1. 初始化驱动模型中的devices/system/memory子系统
    2. 虽然从代码上看这样,但是我在实际的系统中并没有找到/sys/devices/system/memory这个目录
  23. }

Linux内核源码分析--内核启动之(6)Image内核启动(do_basic_setup函数)(Linux-3.0 ARMv7)【转】的更多相关文章

  1. Linux内核源码分析 day01——内存寻址

    前言 Linux内核源码分析 Antz系统编写已经开始了内核部分了,在编写时同时也参考学习一点Linux内核知识. 自制Antz操作系统 一个自制的操作系统,Antz .半图形化半命令式系统,同时嵌入 ...

  2. Linux内核源码分析--内核启动之(3)Image内核启动(C语言部分)(Linux-3.0 ARMv7)

    http://blog.chinaunix.net/uid-20543672-id-3157283.html Linux内核源码分析--内核启动之(3)Image内核启动(C语言部分)(Linux-3 ...

  3. Linux内核源码分析--内核启动之(4)Image内核启动(setup_arch函数)(Linux-3.0 ARMv7)【转】

    原文地址:Linux内核源码分析--内核启动之(4)Image内核启动(setup_arch函数)(Linux-3.0 ARMv7) 作者:tekkamanninja 转自:http://blog.c ...

  4. Linux内核源码分析方法

    一.内核源码之我见 Linux内核代码的庞大令不少人“望而生畏”,也正因为如此,使得人们对Linux的了解仅处于泛泛的层次.如果想透析Linux,深入操作系统的本质,阅读内核源码是最有效的途径.我们都 ...

  5. 【转】Linux内核源码分析方法

    一.内核源码之我见 Linux内核代码的庞大令不少人“望而生畏”,也正因为如此,使得人们对Linux的了解仅处于泛泛的层次.如果想透析Linux,深入操作系统的本质,阅读内核源码是最有效的途径.我们都 ...

  6. Linux内核源码分析方法_转

    Linux内核源码分析方法 转自:http://www.cnblogs.com/fanzhidongyzby/archive/2013/03/20/2970624.html 一.内核源码之我见 Lin ...

  7. kernel 3.10内核源码分析--hung task机制

    kernel 3.10内核源码分析--hung task机制 一.相关知识: 长期以来,处于D状态(TASK_UNINTERRUPTIBLE状态)的进程 都是让人比较烦恼的问题,处于D状态的进程不能接 ...

  8. linux内存源码分析 - 内存压缩(实现流程)

    本文为原创,转载请注明:http://www.cnblogs.com/tolimit/ 概述 本文章最好结合linux内存管理源码分析 - 页框分配器与linux内存源码分析 -伙伴系统(初始化和申请 ...

  9. linux内存源码分析 - 伙伴系统(初始化和申请页框)

    本文为原创,转载请注明:http://www.cnblogs.com/tolimit/ 之前的文章已经介绍了伙伴系统,这篇我们主要看看源码中是如何初始化伙伴系统.从伙伴系统中分配页框,返回页框于伙伴系 ...

随机推荐

  1. Windows 基础知识2

    1.进程通信的几种方式 管道:匿名,命名 信号 报文 共享内存 信号量:主要作为进程和同一进程的线程同步的方式 套接字 2.线程通信的几种方式: 临界区,信号量.互斥量.事件. 信号量:它允许多个线程 ...

  2. 转-C#让枚举返回字符串

    下面的手段是使用给枚举项打标签的方式,来返回字符串 下面分别定义一个属性类,和一个枚举帮助类 [AttributeUsage(AttributeTargets.Field,AllowMultiple  ...

  3. DWZ框架一些技巧

    DWZ框架from表单提交后关闭对话框 注意大小写 <input type="hidden" name="callbackType" value=&quo ...

  4. bash变量操作

    1.条件变量替换: Bash Shell可以进行变量的条件替换,既只有某种条件发生时才进行替换,替换 条件放在{}中. (1) ${value:-word} 当变量未定义或者值为空时,返回值为word ...

  5. influxdb和boltDB简介——底层本质类似LMDB,MVCC+B+树

    influxdb influxdb是最新的一个时间序列数据库,最新一两年才产生,但已经拥有极高的人气.influxdb 是用Go写的,0.9版本的influxdb对于之前会有很大的改变,后端存储有Le ...

  6. hive学习笔记——表的基本的操作

    1.hive的数据加载方式 1.1.load data 这中方式一般用于初始化的时候 load data [local] inpath '...' [overwrite] into table t1 ...

  7. Qt exe图标

    1.首先准备一张ico照片,也可以通过http://www.ico.la/生成: 2.把ico照片拷贝到项目工程下,比如:“pic.ico” 3.在工程下,创建一个文件“myapp.rc”,用txt打 ...

  8. 老李分享:Android -自动化埋点 1

    老李分享:Android -自动化埋点   当我们开发一款Android应用上线后,希望能收集一些用户操作的行为数据,比如用户在某个页面点击了多少次,在某个控件被点击了多少次,在某个页面停 留了多少时 ...

  9. Linux:如何进行c++编程

    不适应美帝的饮食,当一只咸鱼在apartment里Coding一波,学习学习如何在Ubuntu实现C++的编程 正文如下: (预备知识) 学习Vim:  http://www.cnblogs.com/ ...

  10. Visual Studio 2019 使用 Live Share

    一.前言 Visual Studio 2019 在今天发布(北京时间)了,这次带来了一个比较有趣的 Live Share 功能,使用它可以进行更好的协作开发.主要功能: 更多资料可看官方介绍: Vis ...