题目链接

题目大意:给出一颗含有$n$个结点的树,每个节点有一个颜色。求树中每个子树最多的颜色的编号和。

-------------------------

树上启发式合并(dsu on tree)。

我们先考虑暴力怎么做。遍历整颗树,暴力枚举子树然后用桶维护颜色个数。这样做是$O(n^2)$的,显然会T。我们需要一种更快的算法:树上启发式合并。

关于启发式算法的介绍,详见OI Wiki。本文只介绍树上启发式合并算法。本题的解法:

每处理完一颗子树,我们都要把桶清空一次,以免对它的兄弟造成影响。而这样做还要从它的祖先遍历一遍,浪费时间。

我们发现:遍历最后一颗子树时,桶是不用清空的。因为遍历完那颗子树后可以直接把答案加入$ans$中。那我们肯定选重儿子啊,省时省力。遍历轻儿子相对不费事。

看起来是不是没有快多少?实际上它是$O(n\log n)$的。下面是证明:

对于每个节点,它被计算的次数就是它到根节点路径的轻边个数。

而结点往上跳一次,子树大小至少为原来两倍,所以轻边个数最多是$\log n$。所以时间复杂度$O(n\log n)$。

证明过程跟树链剖分的有点像。

代码:

#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,color[],bucket[],ans[];
int size[],son[],sum,mx;
int head[],cnt;
struct node
{
int next,to;
}edge[];
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if (ch=='-') f=-;ch=getchar();}
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void add(int from,int to)
{
edge[++cnt].next=head[from];
edge[cnt].to=to;
head[from]=cnt;
}
inline void dfs_son(int now,int fa)
{
size[now]=;
int mx=,p=;
for (int i=head[now];i;i=edge[i].next)
{
int to=edge[i].to;
if (to==fa) continue;
dfs_son(to,now);
size[now]+=size[to];
if (size[to]>mx)
{
mx=size[to];
p=to;
}
}
if (p) son[p]=;
}
void getans(int x,int f,int p){
bucket[color[x]]++;
if(bucket[color[x]]>mx){
mx=bucket[color[x]];
sum=color[x];
}else if(bucket[color[x]]==mx)sum+=color[x];
for(int i=head[x];i;i=edge[i].next){
int y=edge[i].to;
if(y==f || y==p)continue;
getans(y,x,p);
}
}
inline void init(int now,int fa)
{
bucket[color[now]]--;
for (int i=head[now];i;i=edge[i].next)
{
int to=edge[i].to;
if (to==fa) continue;
init(to,now);
}
}
inline void dfs(int now,int fa)
{
int p=;
for (int i=head[now];i;i=edge[i].next)
{
int to=edge[i].to;
if (to==fa) continue;
if (!son[to])
{
dfs(to,now);
init(to,now);
sum=mx=;
}
else p=to;
}
if (p) dfs(p,now);
getans(now,fa,p);
ans[now]=sum;
}
signed main()
{
n=read();
for (int i=;i<=n;i++) color[i]=read();
for (int i=;i<n;i++)
{
int x=read(),y=read();
add(x,y);add(y,x);
}
dfs_son(,);
dfs(,);
for (int i=;i<=n;i++) printf("%lld ",ans[i]);
return ;
}

【CF600E】Lomset gelral 题解(树上启发式合并)的更多相关文章

  1. [Codeforces600E] Lomsat gelral(树上启发式合并)

    [Codeforces600E] Lomsat gelral(树上启发式合并) 题面 给出一棵N个点的树,求其所有子树内出现次数最多的颜色编号和.如果多种颜色出现次数相同,那么编号都要算进答案 N≤1 ...

  2. Codeforces 600E - Lomsat gelral(树上启发式合并)

    600E - Lomsat gelral 题意 给出一颗以 1 为根的树,每个点有颜色,如果某个子树上某个颜色出现的次数最多,则认为它在这课子树有支配地位,一颗子树上,可能有多个有支配的地位的颜色,对 ...

  3. Codeforces 600E Lomsat gelral (树上启发式合并)

    题目链接 Lomsat gelral 占坑……等深入理解了再来补题解…… #include <bits/stdc++.h> using namespace std; #define rep ...

  4. 【学习笔记/题解】树上启发式合并/CF600E Lomsat gelral

    题目戳我 \(\text{Solution:}\) 树上启发式合并,是对普通暴力的一种优化. 考虑本题,最暴力的做法显然是暴力统计每一次的子树,为了避免其他子树影响,每次统计完子树都需要清空其信息. ...

  5. CF EDU - E. Lomsat gelral 树上启发式合并

    学习:http://codeforces.com/blog/entry/44351 E. Lomsat gelral 题意: 给定一个以1为根节点的树,每个节点都有一个颜色,问每个节点的子树中,颜色最 ...

  6. dsu on tree 树上启发式合并 学习笔记

    近几天跟着dreagonm大佬学习了\(dsu\ on\ tree\),来总结一下: \(dsu\ on\ tree\),也就是树上启发式合并,是用来处理一类离线的树上询问问题(比如子树内的颜色种数) ...

  7. 树上启发式合并(dsu on tree)学习笔记

    有丶难,学到自闭 参考的文章: zcysky:[学习笔记]dsu on tree Arpa:[Tutorial] Sack (dsu on tree) 先康一康模板题吧:CF 600E($Lomsat ...

  8. 神奇的树上启发式合并 (dsu on tree)

    参考资料 https://www.cnblogs.com/zhoushuyu/p/9069164.html https://www.cnblogs.com/candy99/p/dsuontree.ht ...

  9. dsu on tree (树上启发式合并) 详解

    一直都没出过算法详解,昨天心血来潮想写一篇,于是 dsu on tree 它来了 1.前置技能 1.链式前向星(vector 建图) 2.dfs 建树 3.剖分轻重链,轻重儿子 重儿子 一个结点的所有 ...

随机推荐

  1. .Net Core微服务入门全纪录(八)——Docker Compose与容器网络

    Tips:本篇已加入系列文章阅读目录,可点击查看更多相关文章. 前言 上一篇[.Net Core微服务入门全纪录(七)--IdentityServer4-授权认证]中使用IdentityServer4 ...

  2. day58 作业

    目录 一.做一个图书管理系统页面 二.做一个主页模版 三.点赞 一.做一个图书管理系统页面 <!DOCTYPE html> <html lang="en"> ...

  3. Python math 、cmath

    1.math dir(math) 2.cmath 复数运算

  4. 数据可视化之DAX篇(十七)Power BI表格总计行错误的终极解决方案

    https://zhuanlan.zhihu.com/p/68183990 我在知识星球收到的问题中,关于表格和矩阵(以下统称表格)总计行错误算是常见的问题之一了,不少初学者甚为不解,在Excel透视 ...

  5. python 面向对象专题(六):元类type、反射、函数与类的区别、特殊的双下方法

    目录 Python面向对象06 /元类type.反射.函数与类的区别.特殊的双下方法 1. 元类type 2. 反射 3. 函数与类的区别 4. 特殊的双下方法 1. 元类type type:获取对象 ...

  6. sql与SQL CODE和SQL State相关报错

    操作数据库过程中,遇到许多问题,很多都与SQL CODE和SQL State相关,现在把一个完整的SQLCODE和SQLState错误信息和相关解释作以下说明,一来可以自己参考,对DB2错误自行找出原 ...

  7. 手把手带你玩转 DialogFragment

    前言 本文已经收录到我的 Github 个人博客,欢迎大佬们光临寒舍: 我的 GIthub 博客 思维导图 一.为什么要学习 DialogFragment 你还在用 Dialog 吗? 你还在经常烦恼 ...

  8. 写给程序员的机器学习入门 (八) - 卷积神经网络 (CNN) - 图片分类和验证码识别

    这一篇将会介绍卷积神经网络 (CNN),CNN 模型非常适合用来进行图片相关的学习,例如图片分类和验证码识别,也可以配合其他模型实现 OCR. 使用 Python 处理图片 在具体介绍 CNN 之前, ...

  9. C# POST请求中raw 参数的传递

    public static string PostmanPost() { var client = new RestClient("http://119.3.248.64:3000" ...

  10. Python网络数据采集PDF高清完整版免费下载|百度云盘

    百度云盘:Python网络数据采集PDF高清完整版免费下载 提取码:1vc5   内容简介 本书采用简洁强大的Python语言,介绍了网络数据采集,并为采集新式网络中的各种数据类型提供了全面的指导.第 ...