F1是Google开发的分布式关系型数据库,主要服务于Google的广告系统。Google的广告系统以前使用MySQL,广告系统的用户经常需要使用复杂的query和join操作,这就需要设计shard规则时格外注意,尽量将相关数据shard到同一台MySQL上。扩容时对数据reshard时也需要尽量保证这一点,广告系统扩容比较艰难。在可用性方面老的广告系统做的也不够,尤其是整个数据中心挂掉的情况,部分服务将不可用或者丢数据。对于广告系统来说,短暂的宕机服务不可用将带来重大的损失。为了解决扩容/高可用的问题,Google研发了F1,一个基于Spanner(看这里)的跨数据中心的分布式关系型数据库,支持ACID,支持全局索引。2012年初已上线。

F1的几个特性

高可用

可以说,几乎都是Spanner搞定的,Spanner通过原子钟和GPS接收器实现的TrueTime API搞定了跨数据中心时钟误差问题,进而搞定了分布式事务的时序问题,从而搞定了对外部的一致性。多个副本的一致通过Paxos搞定。

全局索引

基于Spanner提供的分布式读写事务(严格的两阶段锁+两阶段提交),F1实现了全局索引。索引表和数据表实际上是两张表,这两张表一般来说存在不同的Spanner机器上,两张表的一致性通过Spanner的分布式读写事务解决。在这里,同一个事务中涉及的全局索引不宜过多,因为每多一个全局索引,相当于多一个两阶段提交中的participant,对于分布式事务来说,participant越多,性能越差,并且事务成功的概率越小。

级联Schema

思想和MegaStore类似,表和表之间有层次关系。将相关表中的相关数据存储在一台机器上。比如对于广告系统来说,就是将一个广告客户以及他的compaign等存储在一起,广告客户作为一张表,compaign作为另外一张表,广告客户表中每行代表一个广告客户,广告客户表叫做root表,compaign表叫做子表,广告客户表中的每行叫做root记录,compaign表中行叫做子记录,那么同一个广告客户下所有的compaign和这个广告客户都存储在同一台Spanner机器上。这样做的好处就是一个操作就可以取到所有的相关数据,join很快,不用跨机。

三种事务

  1. 快照读。 直接利用Spanner提供的快照读事务
  2. 悲观事务。 直接利用Spanner提供的读写事务,加两阶段锁
  3. 乐观事务。 基于Spanner的悲观事务实现的。这样的事务分为两个阶段,第一个阶段是读阶段,持续时间不限,不加任何锁,第二个阶段是写阶段,即commit事务阶段。基本思想是在读阶段将访问的所有行的最后一次修改时间保存在F1客户端,写阶段将所有的时间发到F1,F1开启一个Spanner的读写事务,这个读写事务会重新读取这些行的最后一次修改时间进行check,如果已经变了,说明检测到了写写冲突,事务abort。

F1默认使用乐观事务,主要考虑了如下几个方面:

  1. 由于读阶段不加锁,能容忍一些客户端的误用导致的错误
  2. 同样,读阶段不加锁,适合F1中一些需要和终端交互的场景。
  3. 对于一些出错场景,可以直接在F1 Server进行重试,不需要F1 Client参与。
  4. 由于所有的状态都在F1 Client端维护的,故某个F1 Server挂掉后,这个请求可以发给其他的F1 Server继续处理。

当然,这会带来两个问题:

  1. 对于不存在的行,没有最后一次修改时间,那么在其他读事务执行期间,同一条语句执行多次返回的行数可能不一样,这种情况在repeatable read这种隔离级别下是不允许的,这个问题典型的解决方案是gap锁,即范围锁,在F1中,这个锁可以是root表中root记录的一列,这个列代表一把gap锁,只有拿到这把锁,才能往child表中某个范围插入行。
  2. 对同一行高并发修改性能低。显然,乐观协议不适合这种场景。

部署

Google将广告系统使用的F1和Spanner集群部署在美国的5个数据中心,东海岸两个,西海岸两个,中间一个。相当于每份数据5个副本,其中东海岸一个数据中心被作为leader数据中心。在spanner的paxos实现中,5个副本中有一个leader副本,所有的对这个副本的读写事务都经过它,这个leader副本一般就存在leader数据中心中。由于paxos协议的运行只需要majority响应即可,那么一次paxos操作的延时基本取决于东海岸的leader数据中心和东海岸另外一个数据中心,和中间那个数据中心之间的延时。从这里也可以看出,对于写比较多的F1 Client来说,F1 Client和F1 Server都部署在leader数据中心性能最好。在这个配置下,F1用户的commit延时大概在50ms到150ms之间。读延时大约5~10ms。

参考资料

F1: A Distributed SQL Database That Scales

Spanner: Google’s Globally-Distributed Database

分布式事务实现-Spanner

Google的分布式关系型数据库F1和Spanner的更多相关文章

  1. Google 分布式关系型数据库 F1

    F1是Google开发的分布式关系型数据库,主要服务于Google的广告系统.Google的广告系统以前使用MySQL,广告系统的用户经常需要使用复杂的query和join操作,这就需要设计shard ...

  2. GreenPlum:基于PostgreSQL的分布式关系型数据库

    GreenPlum是一个底层是多台PostgreSQL分表分库的分布式数据库,它有如下特点 支持标准SQL,几乎所有PostgreSQL支持的SQL,greenplum都支持 支持ACID.分布式事务 ...

  3. 世界级的开源项目:TiDB 如何重新定义下一代关系型数据库

    著名的开源分布式缓存服务 Codis 的作者,PingCAP 联合创始人& CTO ,资深 infrastructure 工程师的黄东旭,擅长分布式存储系统的设计与实现,开源狂热分子的技术大神 ...

  4. Cobar是提供关系型数据库(MySQL)分布式服务的中间件

    简介 Cobar是提供关系型数据库(MySQL)分布式服务的中间件,它可以让传统的数据库得到良好的线性扩展,并看上去还是一个数据库,对应用保持透明. 产品在阿里巴巴稳定运行3年以上. 接管了3000+ ...

  5. 非关系型数据库(NoSql)

    最近了解了一点非关系型数据库,刚刚接触,觉得这是一个很好的方向,对于大数据 方面的处理,非关系型数据库能起到至关重要的地位.这里我主要是整理了一些前辈的经验,仅供参考. 关系型数据库的特点 1.关系型 ...

  6. Cassandra——类似levelDB的基于p2p架构的分布式NOSQL数据库

    C: Consistency 一致性 • A: Availability 可用性(指的是快速获取数据) • P: Tolerance of network Partition 分区容忍性(分布式) 1 ...

  7. Flink RichSourceFunction应用,读关系型数据(mysql)数据写入关系型数据库(mysql)

    1. 写在前面 Flink被誉为第四代大数据计算引擎组件,即可以用作基于离线分布式计算,也可以应用于实时计算.Flink的核心是转化为流进行计算.Flink三个核心:Source,Transforma ...

  8. MongoDB非关系型数据库开发手册

    一:NoSql数据库 什么是NoSQL? NoSQL,指的是非关系型的数据库.NoSQL有时也称作Not Only SQL的缩写,是对不同于传统的关系型数据库的数据库管理系统的统称. NoSQL用于超 ...

  9. 非关系型数据库----MongoDB

    一.什么是MongoDB? MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统. 在高负载的情况下,添加更多的节点,可以保证服务器性能. MongoDB 旨在为WEB应用提 ...

随机推荐

  1. JavaScript基本语法(五)

    BOM 浏览器对象模型 BOM (浏览器对象模型),它提供了与浏览器窗口进行交互的对象. 一.window对象 Window对象表示整个浏览器窗口. 所有浏览器都支持 window 对象.它表示浏览器 ...

  2. 安天AVLTeam送福利喽~~

    #福利来了#  duang~duang~duang~ 安小天帮你辨别短信真伪!!! 是不是经常收到真假难辨的[疑似诈骗短信]是真的?是假的? 傻傻分不清楚 现在不用怕啦!!! 遇到这种情况,只需手机截 ...

  3. 【OpenCV】视频取坐标

    今天实现了视频播放以后暂停获取鼠标点击处坐标的功能. #include <iostream> #include <opencv2/highgui/highgui.hpp> #i ...

  4. hadoop疑难杂症解析

    1:Shuffle Error: Exceeded MAX_FAILED_UNIQUE_FETCHES; bailing-outAnswer:程序里面需要打开多个文件,进行分析,系统一般默认数量是10 ...

  5. OpenStack swift安装

    由于实验室项目需要云存储系统,因此在实验室服务器上搭建一个基于OpenStack swift的云存储系统. 最开始按照官方网站上介绍的方法,使用SAIO方式安装http://docs.openstac ...

  6. HDU 5572 An Easy Physics Problem (计算几何+对称点模板)

    HDU 5572 An Easy Physics Problem (计算几何) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5572 Descripti ...

  7. SpringMVC运行流程

    Spring工作流程描述       1. 用户向服务器发送请求,请求被Spring 前端控制Servelt DispatcherServlet捕获:       2. DispatcherServl ...

  8. gson 入门使用

    参考文章:https://www.cnblogs.com/majay/p/6336918.html Java 对象与 Json 之间的互相转换,用的比较多大是 Jackson 与 Gson 第一步:添 ...

  9. nginx详解反向代理、负载均衡、LNMP架构上线动态网站(week4_day1_part1)-技术流ken

    nginx介绍 Nginx是俄罗斯人编写的十分轻量级的HTTP服务器,Nginx,它的发音为“engine X”,是一个高性能的HTTP和反向代理服务器,同时也是一个IMAP/POP3/SMTP 代理 ...

  10. linux后台运行命令:&amp;和nohup

    常用后台运行命令包含:&和nohup 一.& 使用 当在前台运行某个作业时,终端被该作业占据:可以在命令后面加上& 实现后台运行.例如:sh test.sh & 适合在 ...